Homework Assignment \#2

Spring 2017 - MATH308, Regular section

due February 2, 2017 at the beginning of class

Topics covered : method of integrating factor (sections 2.1); mixing model (section 2.3), exact equations and integrating factor (section 2.6).

1. (a) Find the general solution of the differential equation

$$
\left(t^{2}-1\right) y^{\prime}=t y+2 t\left(t^{2}-1\right), \quad|t|>1 .
$$

(Hint: Divide both sides of the equation by $t^{2}-1$.)
(b) Solve the initial value problem

$$
x y^{\prime}+3 y=\cos x, \quad y(\pi)=\frac{2}{\pi^{3}} .
$$

2. A tank contains 200 gal of water and 60 oz of salt. Water containing a salt concentration of $(0.2+0.4 \sin 4 t) \mathrm{oz} / \mathrm{gal}$ flow into the tank at the rate of $10 \mathrm{gal} / \mathrm{min}$, and the mixture in the tank flows out at the same rate. Let $Q(t)$ be the amount of salt in the tank at time t.
(a) Write the initial value problem for $Q(t)$, i.e. the differential equation for $Q(t)$ and the initial condition for $Q(0)$;
(b) Find $Q(t)$ at any time moment.
3. Check if the following equation is exact and if yes, solve the given initial-value problem:

$$
y(\cos 2 x) e^{x y}-2(\sin 2 x) e^{x y}+2 x=\left(3-x(\cos 2 x) e^{x y}\right) \frac{d y}{d x}, \quad y(0)=0 .
$$

(Hint: Move the right-hand side to the left.)
4. Find the value of parameter a for which the differential equation

$$
\left(x+y e^{2 x y}\right) d x+a x e^{2 x y} d y=0
$$

is exact, and then find the general solution in the case of this value of a.
5. For the differential equation

$$
x+e^{y}+\left(\frac{x^{2}}{2}+2 x e^{y}\right) \frac{d y}{d x}=0
$$

find the integrating factor depending on y only to make it exact and then solve the equation.

