Homework Assignment 3 in Differential Equations, MATH308-Spring 2015

due February 4, 2015

Topics covered : method of integrating factor (sections 2.1), modeling with first order equation (section 2.3).

1. Find the general solution of the differential equation

$$
y^{\prime}+3 y=4 e^{-2 t}
$$

and determine how the solutions behave as $t \rightarrow+\infty$.
2. (a) Solve the initial value problem

$$
\begin{equation*}
y^{\prime}-\frac{2 y}{t+1}=e^{-3 t}(t+1)^{2}, \quad y(0)=a \tag{1}
\end{equation*}
$$

(b) How do the solutions of (1) behave as t goes to $+\infty$? Show that this behavior depend on the choice of the initial value a and find the value a_{0} for which the transition from one type of behavior to another occurs;
(c) Describe the behavior of the solution of (1) corresponding to the initial condition $y(0)=a_{0}$, where a_{0} is as in the previous item.
3. A tank contains 200 gal of water and 25 oz of salt. Water containing a salt concentration of $\left(1+\frac{1}{2} \sin t\right) \mathrm{oz} / \mathrm{gal}$ flow into the tank at the rate of $4 \mathrm{gal} / \mathrm{min}$, and the mixture in the tank flows out at the same rate. Let $Q(t)$ be the amount of salt in the tank at time t.
(a) Write the differential equation for $\mathrm{Q}(\mathrm{t})$. What initial condition does $Q(t)$ satisfy?
(b) Find $Q(t)$ at any time moment;

