Homework Assignment 4 in MATH308-Spring 2016, Honors section

due February 23, 2017

<u>Topics covered</u>: Wronskian, fundamental set of solutions of linear homogeneous equations of second order. linear homogeneous equations of second order with constant coefficients (sections 3.1-3.4).

- 1. (a) Calculate the Wronskian of the the pair of the functions $\sin^2 t$, $1 \cos 2t$.
 - (b) Assume that $y_1(t)$ and $y_2(t)$ are two solutions of the equation

$$y'' + p(t)y' + q(t)y = 0$$
(1)

on the interval (-1, 1), where the functions p(t) and q(t) are continuous on the same interval. It is known that $y_1(0) = 2$, $y'_1(0) = -4$, $y_2(0) = -3$, and $y'_2(0) = 5$. Is it true that the general solution of (1) is $C_1y_1(t) + C_2y_2(t)$? Justify your answer.

- (c) Answer the same question as in the previous item if $y_1(0) = 2$, $y'_1(0) = -4$, $y_2(0) = -3$, but $y'_2(0) = 6$. Justify your answer. How y_1 and y_2 are related in this case (namely, express $y_2(t)$ in terms of $y_1(t)$, if possible?
- (d) Assume again that $y_1(t)$ and $y_2(t)$ are solutions of (1) on the interval (-1, 1). Prove that if $y_1(t)$ and $y_2(t)$ achieve a maximum or minimum at the same point, then they cannot form a fundamental set of solutions on this interval.
- (e) Suppose that the Wronskian of any two solutions of (1) is constant in time. Prove that $p(t) \equiv 0$. (Hint: Use the Abel theorem)
- (f) (bonus-20 points) Assume that $y_1(t)$ and $y_2(t)$ form a fundamental set of solutions of (1) on the interval (-1, 1). Assume also that for some t_1 and t_2 in (-1, 1) with $t_1 < t_2$ we have: $y_2(t_1) = 0$, $y_2(t_2) = 0$, and $y_2(t) \neq 0$ for all t in the interval (t_1, t_2) . Show that there exists a unique c in the interval (t_1, t_2) such that $y_1(c) = 0$. (Hint: Differentiate the quantity $\frac{y_2}{y_1}$)
- 2. Consider differential equations $\frac{1}{3}y'' y' + \alpha y = 0$, where α is a parameter.
 - (a) In each of the following three cases find the general solution of the differential equation corresponding to the given α , if:

i) $\alpha = \frac{5}{12}$; ii) $\alpha = \frac{3}{4}$; iii) $\alpha = \frac{13}{12}$. (if the roots of the characteristic equation are complex, please find the real-valued general solution, i.e. the answer in the form $C_1 e^{rt} + C_2 e^{\bar{r}}$, where r is complex, will not be accepted)).

- (b) For the case of item (a) i), i.e. when $\alpha = \frac{5}{12}$, solve the following problems:
 - i. find the solution satisfying the initial condition y(0) = -2, y'(0) = V, where V is a parameter;
 - ii. find all parameters V such that the solution y(t) obtained in the previous subitem for such V satisfies: y(t) < 0 for any $t \ge 0$.
- (c) For the case of item (a) iii), i.e. when $\alpha = \frac{13}{12}$ solve the following problems:
 - i. Find the solution of the equation with the initial conditions $y(\frac{\pi}{2}) = -4e^{\frac{3\pi}{4}}, y'(\frac{\pi}{2}) = -9e^{\frac{3\pi}{4}}$. Describe the behavior of the solution as $t \to -\infty$;
 - ii. Determine $\lambda, \mu > 0, R > 0$ and $\delta \in [0, 2\pi)$ so that the solution obtained in the previous item can be written in the form $e^{\lambda t} R \cos(\mu t \delta)$ (you can use a calculator to determine an approximate value of δ). Then sketch the graph of this solution.
- 3. Consider the equation $y'' + (1 \alpha)y' + (2\alpha 3)(4 3\alpha)y = 0$, where α is a parameter.
 - (a) Determine the values of α , if any, for which all solutions tend to zero as $t \to +\infty$.
 - (b) Determine the values of α , if any, for which all nonzero solutions become unbounded as $t \to +\infty$.

Hint: It is more efficient here to use the Vieta theorem for roots of quadratic equation instead of the quadratic formula, but be careful on the signs.