Homework Assignment 4 in MATH308-Spring 2016, Honors section

due February 23, 2017

Topics covered: Wronskian, fundamental set of solutions of linear homogeneous equations of second order. linear homogeneous equations of second order with constant coefficients (sections 3.1-3.4).

1. (a) Calculate the Wronskian of the the pair of the functions $\sin ^{2} t, 1-\cos 2 t$.
(b) Assume that $y_{1}(t)$ and $y_{2}(t)$ are two solutions of the equation

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{1}
\end{equation*}
$$

on the interval $(-1,1)$, where the functions $p(t)$ and $q(t)$ are continuous on the same interval. It is known that $y_{1}(0)=2, y_{1}^{\prime}(0)=-4, y_{2}(0)=-3$, and $y_{2}^{\prime}(0)=5$. Is it true that the general solution of (1) is $C_{1} y_{1}(t)+C_{2} y_{2}(t)$? Justify your answer.
(c) Answer the same question as in the previous item if $y_{1}(0)=2, y_{1}^{\prime}(0)=-4, y_{2}(0)=-3$, but $y_{2}^{\prime}(0)=6$. Justify your answer. How y_{1} and y_{2} are related in this case (namely, express $y_{2}(t)$ in terms of $y_{1}(t)$, if possible?
(d) Assume again that $y_{1}(t)$ and $y_{2}(t)$ are solutions of (1) on the interval $(-1,1)$. Prove that if $y_{1}(t)$ and $y_{2}(t)$ achieve a maximum or minimum at the same point, then they cannot form a fundamental set of solutions on this interval.
(e) Suppose that the Wronskian of any two solutions of (1) is constant in time. Prove that $p(t) \equiv 0$. (Hint: Use the Abel theorem)
(f) (bonus-20 points) Assume that $y_{1}(t)$ and $y_{2}(t)$ form a fundamental set of solutions of (1) on the interval $(-1,1)$. Assume also that for some t_{1} and t_{2} in $(-1,1)$ with $t_{1}<t_{2}$ we have: $y_{2}\left(t_{1}\right)=0$, $y_{2}\left(t_{2}\right)=0$, and $y_{2}(t) \neq 0$ for all t in the interval $\left(t_{1}, t_{2}\right)$. Show that there exists a unique c in the interval $\left(t_{1}, t_{2}\right)$ such that $y_{1}(c)=0$. (Hint: Differentiate the quantity $\frac{y_{2}}{y_{1}}$)
2. Consider differential equations $\frac{1}{3} y^{\prime \prime}-y^{\prime}+\alpha y=0$, where α is a parameter.
(a) In each of the following three cases find the general solution of the differential equation corresponding to the given α, if:
i) $\alpha=\frac{5}{12}$;
ii) $\alpha=\frac{3}{4}$;
iii) $\alpha=\frac{13}{12}$.
(if the roots of the characteristic equation are complex, please find the real-valued general solution, i.e. the answer in the form $C_{1} e^{r t}+C_{2} e^{\bar{r}}$, where r is complex, will not be accepted)).
(b) For the case of item (a) i), i.e. when $\alpha=\frac{5}{12}$, solve the following problems:
i. find the solution satisfying the initial condition $y(0)=-2, y^{\prime}(0)=V$, where V is a parameter;
ii. find all parameters V such that the solution $y(t)$ obtained in the previous subitem for such V satisfies: $y(t)<0$ for any $t \geq 0$.
(c) For the case of item (a) iii), i.e. when $\alpha=\frac{13}{12}$ solve the following problems:
i. Find the solution of the equation with the initial conditions $y\left(\frac{\pi}{2}\right)=-4 e^{\frac{3 \pi}{4}}, y^{\prime}\left(\frac{\pi}{2}\right)=-9 e^{\frac{3 \pi}{4}}$. Describe the behavior of the solution as $t \rightarrow-\infty$;
ii. Determine $\lambda, \mu>0, R>0$ and $\delta \in[0,2 \pi)$ so that the solution obtained in the previous item can be written in the form $e^{\lambda t} R \cos (\mu t-\delta)$ (you can use a calculator to determine an approximate value of δ). Then sketch the graph of this solution.
3. Consider the equation $y^{\prime \prime}+(1-\alpha) y^{\prime}+(2 \alpha-3)(4-3 \alpha) y=0$, where α is a parameter.
(a) Determine the values of α, if any, for which all solutions tend to zero as $t \rightarrow+\infty$.
(b) Determine the values of α, if any, for which all nonzero solutions become unbounded as $t \rightarrow+\infty$.

Hint: It is more efficient here to use the Vieta theorem for roots of quadratic equation instead of the quadratic formula, but be careful on the signs.

