Homework Assignment 5 in MATH 308-Fall 2016 due October 5, 2016

<u>Topics covered</u> : linear homogeneous equations of second order with constant coefficient: the cases of real roots (an additional exercise), repeated roots (section 3.4), complex roots (section 3.3), mechanical vibratons (section 3.7); use that the gravitational acceleration $g = 32 \frac{ft}{c^2}$

- 1. Consider the equation $y'' + (\alpha + 1)y' + (\alpha 2)(1 2\alpha)y = 0$, where α is a parameter.
 - (a) Determine the values of α , if any for which all solutions tend to zero as $t \to \infty$.
 - (b) Determine the values of α , if any for which all nonzero solutions become unbounded as $t \to \infty$.

Hint: It is more efficient here to use the Vieta theorem for roots of quadratic equation instead of the quadratic formula

- 2. Consider the differential equation 16y'' + 24y' + 9y = 0.
 - (a) Find the solution satisfying the initial conditions y(0) = -1, $y'(0) = \alpha$;
 - (b) For the solutions obtained in the previous item find the values of α , if any, for which the solutions tends to $+\infty$ as $t \to -\infty$ and the values of α , if any, for which the solutions tend to $-\infty$ as $t \to -\infty$.
- 3. (a) Write the given expressions in the form a + ib:

(i) (3-2i)(10+5i); (ii) $\frac{3-4i}{2-5i}$ (Hint for (ii): multiply both numerator and denominator by complex conjugate of the denominator)

- (b) Use Euler's formula to write the given expression in the form a + ib: (i) $e^{-2-\frac{11\pi}{6}i}$; (ii) $(1-i)^9$.
- 4. Consider the differential equation 9y'' + 12y' + 20y = 0.
 - (a) Find the solution of the equation with the initial conditions $y(-\frac{\pi}{2}) = -3$, $y'(-\frac{\pi}{2}) = 4$. Describe the behavior of the solution as $t \to +\infty$.
 - (b) Determine λ , $\mu > 0$, R > 0 and $\delta \in [0, 2\pi)$ so that the solution obtained in the previous item can be written in the form $e^{\lambda t} R \cos(\mu t \delta)$ (you can use a calculator to determine an approximate value of δ). Then sketch the graph of this solution.
- 5. (a) A mass weigh 4 lb stretches a spring 24 in. Assume that there is no damping. If after this the mass is pushed 2 in down and then set in motion with upward velocity of 3 in/s, determine the position u of the mass at any time t. Find the natural frequency, the period, the amplitude, and the phase of the motion (you can use calculator to determine the phase).
 - (b) Assume that in the case of the spring-mass system of item (b) there is also a damping and we can change the damping constant. What is the critical damping constant?