Homework Assignment 7 in Differential Equations, MATH308-Fall 2016

 due October 17, 2016Section covered: 7.3 (finding eigenvalues of matrices), 7.4 (fundamental set of solutions), 7.5 (linear homogeneous systems with constant coefficients : the case of distinct real eigenvalues and $n=2$)

1. Determine whether the following solutions of the the system $x^{\prime}(t)=A x(t)$ form a fundamental set of its solutions. If they do, find general solution of the system.
(a) $x^{1}=\left(\begin{array}{c}-4 e^{-5 t} \\ 3 e^{-5 t} \\ 2 e^{-5 t}\end{array}\right), \quad x^{2}=\left(\begin{array}{c}e^{3 t} \cos 2 t \\ -e^{3 t} \sin 2 t \\ -2 e^{3 t} \sin 2 t\end{array}\right), \quad x^{3}=\left(\begin{array}{c}e^{3 t} \sin 2 t \\ e^{3 t} \cos 2 t \\ 2 e^{3 t} \cos 2 t\end{array}\right)$
(b) $x^{1}=e^{-7 t}\binom{10}{-14}, \quad x^{2}=e^{-7 t}\binom{-5}{7}$
2. Given the following system of linear differential equations:

$$
\left\{\begin{align*}
x_{1}^{\prime} & =-8 x_{1}-10 x_{2} \tag{1}\\
x_{2}^{\prime} & =5 x_{1}+7 x_{2}
\end{align*}\right.
$$

(a) Find the general solution of the system (1).
(b) Find the solution of the the system (1) satisfying the initial conditions: $x_{1}(0)=3, \quad x_{2}(0)=$ -2 .
(c) Find all α_{1} and α_{2} such that if $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$ is the solution of of the system (1) with initial condition $x(0)=\binom{\alpha_{1}}{\alpha_{2}}$ then $x(t) \rightarrow 0$ as $t \rightarrow \infty$.
(d) Find all β_{1} and β_{2} such that if $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$ is the solution of of the system (1) with initial condition $x(0)=\binom{\beta_{1}}{\beta_{2}}$ then $x(t) \rightarrow 0$ as $t \rightarrow-\infty$.
3. Find the eigenvalues of the following matrix

$$
A=\left(\begin{array}{ccc}
-2 & 3 & -1 \\
4 & -1 & 1 \\
-4 & -3 & -5
\end{array}\right)
$$

It is known that A has at least one integer eigenvalue.

