Homework Assignment 7 in Differential Equations, MATH308-SPRING 2017

due April 11, 2017 Topics covered: The case of complex eigenvalues(section 7.6),Matrix exponential (section 7.7), Repeated eigenvalues (the case of $n=2$)(section 7.8)

1. Given the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=4 x_{1}-2 x_{2} \tag{1}\\
x_{2}^{\prime}=4 x_{1}+8 x_{2}
\end{array}\right.
$$

(a) Find the general solution of the system (3).
(b) If $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$ is a solution of (3), what is the limit of $x(t)$ as $t \rightarrow+\infty$. Does this limit depend on initial conditions?
(c) Find the solution of the system (3) satisfying the initial conditions: $x_{1}(0)=-3, \quad x_{2}(0)=5$.
2. Given the following system of linear differential equations:

$$
\left\{\begin{align*}
x_{1}^{\prime} & =-11 x_{1}-6 x_{2}+2 x_{3} \tag{2}\\
x_{2}^{\prime} & =14 x_{1}+9 x_{2}-2 x_{3} \\
x_{3}^{\prime} & =-12 x_{1}-7 x_{2}+x_{3}
\end{align*}\right.
$$

(a) It is known that 3 is an eigenvalue of the corresponding matrix. Find the general solution of the system (2).
(b) Find all $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that if $x(t)=\left(\begin{array}{l}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t)\end{array}\right)$ is the solution of the system (2) with initial condition $x(0)=\left(\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right)$ then $x(t) \rightarrow 0$ as $t \rightarrow+\infty$.
(c) Find all $\beta_{1}, \beta_{2}, \beta_{3}$ such that if $x(t)=\left(\begin{array}{l}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t)\end{array}\right)$ is the solution of the system (2) with initial condition $x(0)=\left(\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \beta_{3}\end{array}\right)$ then $x(t) \rightarrow 0$ as $t \rightarrow-\infty$.
3. (a) $N=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. Calculate $e^{t N}$ using the definition of the matrix exponential. (Hint: Certain
power of N vanish
(b) Let $A=\left(\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda\end{array}\right)$ Calculate $e^{t A}$ (Hint: use that $A=\lambda I+N$, the previous item, and the fact that if $A B=B A$, then $\left.e^{A+B}=e^{A} e^{B}\right)$
4. Given the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-3 x_{1}+x_{2} \tag{3}\\
x_{2}^{\prime}=-x_{1}-5 x_{2}
\end{array}\right.
$$

(a) Find the general solution of the system (3).
(b) If $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$ is a solution of (3), what is the limit of $x(t)$ as $t \rightarrow+\infty$. Does this limit depend on initial conditions?
(c) Find the solution of the system (3) satisfying the initial conditions: $x_{1}(0)=2, \quad x_{2}(0)=-1$.

