Homework Assignment 8 in Differential Equations, MATH308-FALL 2016

due October 24, 2016 Sections covered: section 7.5 (the case of distinct real eigenvalues), section 7.6 (the case of complex eigenvalues)

1. Consider the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-2 x_{1}+3 x_{2}-x_{3} \tag{1}\\
x_{2}^{\prime}=4 x_{1}-x_{2}+x_{3} \\
x_{3}^{\prime}==-4 x_{1}-3 x_{2}-5 x_{3}
\end{array}\right.
$$

Note that the matrix of this system is the same as in problem 3 of the previous homework assignment and we know that that the eigenvalues of it are $2,-4,-6$. Use this information to solve the following:
(a) Find the general solution of the system (1).
(b) Find the solution of the the system (1) satisfying the initial condition $\left(\begin{array}{c}x_{1}(0) \\ x_{2}(0) \\ x_{3}(0)\end{array}\right)=\left(\begin{array}{c}-7 \\ 9 \\ -10\end{array}\right)$
2. Given the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-7 x_{1}+5 x_{2} \tag{2}\\
x_{2}^{\prime}=-4 x_{1}+x_{2}
\end{array}\right.
$$

(a) Find the general solution of the system (2).
(b) If $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$ is a solution of (2), what is the limit of $x(t)$ as $t \rightarrow+\infty$. Does this limit depend on initial conditions?
(c) Find the solution of the system (2) satisfying the initial conditions: $x_{1}(0)=5, \quad x_{2}(0)=-4$.
3. Given the following system of linear differential equations:

$$
\left\{\begin{align*}
x_{1}^{\prime} & =-x_{1}+3 x_{2}-x_{3} \tag{3}\\
x_{2}^{\prime} & =-4 x_{1}+x_{2}+4 x_{3} \\
x_{3}^{\prime} & =2 x_{2}-x_{3}
\end{align*}\right.
$$

(a) It is known that 1 is an eigenvalue of the corresponding matrix. Find the general solution of the system (3).
(b) Find the solution of the the system (3) satisfying the initial condition $\left(\begin{array}{l}x_{1}(0) \\ x_{2}(0) \\ x_{3}(0)\end{array}\right)=\left(\begin{array}{c}4 \\ -2 \\ 3\end{array}\right)$
(c) Find all $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that if $x(t)=\left(\begin{array}{l}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t)\end{array}\right)$ is the solution of the system (3) with initial condition $x(0)=\left(\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right)$ then $x(t) \rightarrow 0$ as $t \rightarrow+\infty$.
(d) Find all $\beta_{1}, \beta_{2}, \beta_{3}$ such that if $x(t)=\left(\begin{array}{l}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t)\end{array}\right)$ is the solution of the system (3) with initial condition $x(0)=\left(\begin{array}{l}\beta_{1} \\ \beta_{2} \\ \beta_{3}\end{array}\right)$ then $x(t) \rightarrow 0$ as $t \rightarrow-\infty$.

