Homework Assignment 8 in Differential Equations, MATH308-FALL 2017

due April 18, 2017
Problems 1 and 2 are obligatory and you can solve only one of the Problems 3 or 4 to get 100: if you solve both of the last two problems you get bonus up to 33 points

Sections covered: end of 7.5 (the case when there are repeated eigenvalues and a basis of eigenvectors)\& 7.8 (when there are repeated eigenvalues but no basis of eigenvectors); notes 26 and 27.

1. Consider the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{1}+2 x_{2}-x_{3} \\
x_{2}^{\prime}=4 x_{1}-x_{2}+2 x_{3} \\
x_{3}^{\prime}=4 x_{1}-4 x_{2}+5 x_{3}
\end{array}\right.
$$

It is known that the characteristic polynomial of the matrix of the system is $-\lambda^{3}+5 \lambda^{2}-3 \lambda-9$.
(a) Find all eigenvalues of the corresponding matrix and for each eigenvalue of the matrix determine its algebraic and geometric multiplicities;
(b) Find the general solution.
2. Given the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-10 x_{1}-27 x_{2}+5 x_{3} \\
x_{2}^{\prime}=7 x_{1}+24 x_{2}-5 x_{3} \\
x_{3}^{\prime}=-2 x_{1}+18 x_{2}-8 x_{3}
\end{array}\right.
$$

It is known that the characteristic polynomial of the matrix of the system is $-(\lambda+3)^{2}(\lambda-12)$.
(a) Find the eigenvalues of the corresponding matrix and for each eigenvalue determine its algebraic and geometric multiplicities;
(b) Find the general solution.

For problems 3 and 4 please study notes 27.
3. Given the following system of linear differential equations:

$$
\left\{\begin{aligned}
x_{1}^{\prime} & =4 x_{1}+12 x_{2}+2 x_{3} \\
x_{2}^{\prime} & =-5 x_{1}-12 x_{2}-x_{3} \\
x_{3}^{\prime} & =-20 x_{1}-24 x_{2}-10 x_{3}
\end{aligned}\right.
$$

It is known that the characteristic polynomial of the matrix of the system is $-(\lambda+6)^{3}$.
(a) Find the eigenvalues of the corresponding matrix and for each eigenvalue determine its algebraic and geometric multiplicities;
(b) Find the general solution.
4. Given the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=2 x_{1}+2 x_{2}+x_{3} \\
x_{2}^{\prime}=-\frac{3}{2} x_{1}-2 x_{2}-\frac{1}{2} x_{3} \\
x_{3}^{\prime}=-8 x_{1}-8 x_{2}-3 x_{3}
\end{array}\right.
$$

It is known that the characteristic polynomial of the matrix of the system is $-(\lambda+1)^{3}$.
(a) Find the eigenvalues of the corresponding matrix and for each eigenvalue determine its algebraic and geometric multiplicities;
(b) Find the general solution.

