Homework Assignment 8 in Differential Equations, MATH308-SUMMER 2012

due June 20, 2012

<u>Topics covered</u>: mechanical and electrical vibrations; linear differential equations of second order with constant coefficients: the case of repeated roots (it corresponds to sections 3.7 and 3.4 in the textbook); use that the graviational acceleration $g = 32 \frac{ft}{s^2}$

- 1. (a) Determine $\omega_0 > 0$, R > 0 and $\delta \in [0, 2\pi)$ so as to write the expression $-3\cos 6t + 4\sin 6t$ in the form $R\cos(\omega_0 t \delta)$; (you can use a calculator to determine an approximate value of δ);
 - (b) A mass weigh 16 lb stretches a spring 1.5 in. Assume that there is no damping. If the mass pulled an addition 4 in and then set in motion with upward velocity of 1 ft/s, determine the position u of the mass at any time t. Find the natural frequency, the period, the amplitude, and the phase of the motion (you can use calculator to determine the phase).
 - (c) Assume that in the case of the spring-mass system of item (b) there is also a damping and we can change the damping constant. What is the critical damping constant?
- 2. Consider the differential equation y'' 6y' + 9y = 0.
 - (a) Find the general solution of this equation;
 - (b) Find the solution of this equation satisfying the initial conditions $y(0) = \alpha$, y'(0) = -2;
 - (c) For the solutions obtained in the previous item find the values of α , if any, for which the solutions tends to $+\infty$ as $t \to +\infty$ and the values of α , if any, for which the solutions tend to $-\infty$ as $t \to +\infty$.