Homework Assignment 9 in Differential Equations, MATH308-FALL 2016

due October 31, 2016 Sections covered: end of 7.5 (the case when there are repeated eigenvalues and a basis of eigenvectors)\& 7.8 (when there are repeated eigenvalues but no basis of eigenvectors)

1. Given the following system of linear differential equations:

$$
\left\{\begin{align*}
x_{1}^{\prime} & =x_{1}-16 x_{2} \tag{1}\\
x_{2}^{\prime} & =x_{1}+9 x_{2}
\end{align*}\right.
$$

(a) Find the general solution of the system (1).
(b) If $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$ is a solution of (1), what is the limit of $x(t)$ as $t \rightarrow-\infty$. Does this limit depend on initial conditions?
(c) Find the solution of the system (1) satisfying the initial conditions: $x_{1}(0)=-4, \quad x_{2}(0)=5$.
2. Consider the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-16 x_{1}-3 x_{2}-21 x_{3} \\
x_{2}^{\prime}=12 x_{1}-x_{2}+21 x_{3} \\
x_{3}^{\prime}=12 x_{1}+3 x_{2}+17 x_{3}
\end{array}\right.
$$

Iis known that the characteristic polynomial of the matrix of the system is equal to $-\lambda^{3}+48 \lambda+128$ and $\lambda=-4$ is an eigenvalue of this matrix.
(a) Find all other eigenvalues of the corresponding matrix and for each eigenvalue of the matrix (including the given eigenvalue $\lambda=-4$) determine its algebraic and geometric multiplicities;
(b) Find the general solution.
3. Given the following system of linear differential equations:

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=11 x_{1}+19 x_{2}-14 x_{3} \\
x_{2}^{\prime}=-15 x_{1}-27 x_{2}+22 x_{3} \\
x_{3}^{\prime}=-12 x_{1}-22 x_{2}+19 x_{3}
\end{array}\right.
$$

It is known that the characteristic polynomial of the matrix of the system is equal to $-\lambda^{3}+3 \lambda^{2}-4$.
(a) Find the eigenvalues of the corresponding matrix and for each eigenvalue determine its algebraic and geometric multiplicities;
(b) Find the general solution.
4. Bonus-30 points Given the following system of linear differential equations:

$$
\left\{\begin{aligned}
x_{1}^{\prime} & =6 x_{1}-2 x_{2} \\
x_{2}^{\prime} & =5 x_{1}-x_{2}-x_{3} \\
x_{3}^{\prime} & =-\frac{7}{2} x_{1}+3 x_{2}+4 x_{3}
\end{aligned}\right.
$$

(a) Find the eigenvalues of the corresponding matrix and for each eigenvalue determine its algebraic and geometric multiplicities;
(b) Find the general solution.

