INTEGRABLE AFFINE-QUADRATIC SYSTEMS ON LIE GROUPS: GEOMETRY AND MECHANICS

V. JURDJEVIC UNIVERSITY OF TORONTO

ABSTRACT

There are two natural "control problems" on semi-simple Lie groups G which admit Cartan decomposition $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}$ on their Lie algebras \mathfrak{g} subject to the conditions

$$[\mathfrak{p},\mathfrak{p}]\subseteq\mathfrak{k},[\mathfrak{p},\mathfrak{k}]=\mathfrak{p},[\mathfrak{k},\mathfrak{k}]\subseteq\mathfrak{k}.$$

The first, relevant for the theory of symmetric Riemannian spaces G/K where K is the connected Lie subgroup of G with its Lie algebra equal to \mathfrak{k} , consists of the the sub-Riemannian problem of minimizing the energy $\frac{1}{2} \int_0^T \langle u(t), u(t) \rangle dt$ over the horizontal curves g(t) that are the solutions of $\frac{dg}{dt} = g(t)(u(t))$ with $u(t) \in \mathfrak{p}$ where \langle , \rangle denotes the left invariant metric on \mathfrak{p} that projects onto the Riemannian metric on G/K.

The second problem utilizes the fact that the Killing form Kl is negative definite on \mathfrak{k} whenever K is compact with finite center. For then $\langle , \rangle = -Kl$ is an invariant, non-degenerate quadratic form on \mathfrak{g} that is positive definite on \mathfrak{k} and as such can be used as a base for the following optimal control problem: Minimize $\frac{1}{2} \int_0^T \langle \mathcal{P}(u(t)), u(t) \rangle dt$ over the solutions of

$$\frac{dg}{dt} = g(t)(A + u(t)), \ u(t) \in \mathfrak{k},\tag{1}$$

where A is a fixed element in \mathfrak{p} and where \mathcal{P} is a self-adjoint positive definite operator on \mathfrak{k} relative to \langle , \rangle .

This problem is called affine-quadratic. It is known that each such problem is well defined for a regular element A in \mathfrak{p} , in the sense that for each pair of points g_0 and g_1 there exists a time interval [0,T] and a solution g(t) of (1) that satisfies $g(0) = g_0, g(T) = g_1$ generated by an $L^2([0,T])$ control u(t) which minimizes $\frac{1}{2} \int_0^T \langle \mathcal{P}(u(t)), u(t) \rangle dt$ over any other solution of (1) that satisfies the same boundary conditions.

The principal part of the talk is devoted to the Hamiltonian

$$H = \frac{1}{2} \langle \mathcal{P}^{-1}(L_{\mathfrak{k}}), L_{\mathfrak{k}} \rangle + \langle A, L_{\mathfrak{p}} \rangle, L_{\mathfrak{k}} \in \mathfrak{k}, L_{\mathfrak{p}} \in \mathfrak{p}$$

associated with the above problem. In particular, we will find explicit conditions on A and \mathcal{P} that imply that H is completely integrable in the sense of Liouville. We will

Typeset by \mathcal{AMS} -T_EX

1

V. JURDJEVIC

then interpret our results in the context of contemporary theory of integrable systems on Lie algebras and single out the relevance for some classical problems of mechanics and geometry.