Skip to content
Texas A&M University

Events for 09/23/2022 from all calendars

Student/Postdoc Working Geometry Seminar

iCal  iCal

Time: 1:30PM - 2:30PM

Location: BLOC 628

Speaker: JM Landsberg, TAMU

Title: Castelnuovo's lemma and Steiner bundles

Mathematical Physics and Harmonic Analysis Seminar

iCal  iCal

Time: 1:50PM - 2:50PM

Location: Bloc 306

Speaker: Alain Bensoussan, University of Texas at Dallas

Title: Control On Hilbert Spaces and Mean Field Control

Abstract: In this work, we describe an alternative approach to the general theory of Mean Field Control as presented in the book of P. Cardaliaguet, F. Delarue, J-M Lasry, P-L Lions: The Master Equation and the Convergence Problem in Mean Field Games, Annals of Mathematical Studies, Princeton University Press, 2019. Since it uses Control Theory and not P.D.E. techniques it applies only to Mean Field Control. The general difficulty of Mean Field Control is that the state of the dynamic system is a probability. Therefore, the natural functional space for the state is the Wasserstein metric space. P.L. Lions has suggested to use the correspondence between probability measures and random variables, so that the Wasserstein metric space is replaced with the Hilbert space of square integrable random variables. This idea is called the lifting approach. Unfortunately, this brilliant idea meets some difficulties, which prevents to use it as an alternative, except in particular cases. In using a different Hilbert space, we study a Control problem with state in a Hilbert space, which solves the original Mean Field Control problem, as a particular case, and thus provides a complete alternative to the approach of Cardaliaguet, Delarue, Lasry, Lions. Based on Joint work with P. J. GRABER, P. YAM. Research supported by NSF grants DMS- 1905449 and 2204795.

Geometry Seminar

iCal  iCal

Time: 4:00PM - 5:00PM

Location: BLOC 302

Speaker: Runshi Geng, TAMU

Title: On the geometry of geometric rank

Abstract: Geometric Rank of tensors was introduced by Kopparty et al. as a useful tool to study algebraic complexity theory, extremal combinatorics and quantum information theory. In this talk I will introduce Geometric Rank and results from their paper, in particular showing the relation between geometric rank and other ranks of tensors. Then I will present recent results of geometric rank, including and the connections between geometric rank and spaces of matrices of bounded rank, and classifications of tensors with geometric rank one, two and three.