Matlab Group Assignment \#2

Section \#: $\qquad$
Names:
UINs:
$\qquad$
$\qquad$

In lab, you should have learned Newton's Method: to find an approximate solution to the equation $f(x)=0$, choose a starting guess $x_{1}$ and generate subsequent guesses using the formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

For this assignment, your team will create a program which will implement this procedure until the estimated solutions are within .001 of each other. The general strategy is as follows:

1. Create function files for $f$ and $f^{\prime}$
2. Plot $f$ in an appropriate window to get $x_{1}$, your starting guess
3. Apply Newton's Method until your answers are within .001 of each other (i.e., $\left|x_{n+1}-x_{n}\right|<.001$. NOTE: another way of saying this is to apply Newton's Method while $\left|x_{n+1}-x_{n}\right|>.001$ )

You will be given an equation to solve in lab 7 March and you will run your program for your TA to verify that it works. You will also print your M-file which runs your program and turn that in for your TA to check. To test your program, try it on one of the odd-numbered problems in Section 3.12 of the Stewart text (pp232-233) and check your answer with the back of the book.

