MATH 152, Fall 2019

Worksheet 10

1. Find the third Taylor polynomial for $f(x)=\tan ^{-1} x$ at $x=1$.
2. Find the Maclaurin series for $f(x)=x e^{x}$. Express your answer in sigma notation.
3. Compute the Maclaurin polynomial of degree 4 for the function $f(x)=\cos (x) \ln (1-x)$ for $-1<x<1$.
4. Use a series to approximate the definite integral to within the indicated accuracy

$$
\int_{0}^{1 / 2} x^{2} e^{-x^{2}} d x ; \quad(|e r r o r|<0.001)
$$

5. Find the sum of the series
a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{4^{2 n+1}(2 n+1)!}$
b) $3+\frac{9}{2!}+\frac{27}{3!}+\frac{81}{4!}+\cdots$
6. Use series to evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{x^{3}-3 x+3 \tan ^{-1}(x)}{x^{5}}
$$

