MATH 152, Fall 2019

Worksheet 9

1. The positions of two particles A and B at time t are given by

$$\begin{cases} \mathbf{r}(t) &= < 1 - \cos(t/2), 4\cos^2(t/2) - 4\cos(t/2) > \\ \mathbf{R}(t) &= < \frac{9}{4}t - 1, \frac{9}{4}t > \end{cases}$$

- (a) At what points do the paths intersect?
- (b)At what times do the paths intersect?
- 2. Find the length of that portion of the curve

$$\begin{cases} x = 6t^2 \\ y = \frac{4}{3}t^3 - 9t^2 \end{cases}$$

which lies between the origin and the point (54, 9).

- 3. Find the length of the logarithmic spiral $r(\theta) = e^{\theta}$, between $\theta = 0$ and $\theta = \pi/4$.
- 4. Show that the curve $r = \sin \theta \tan \theta$ (called a cissoid of Diocles) has the line x = 1 as a vertical asymptote.
- 5. Show that the curves $r = a \sin \theta$ and $r = a \cos \theta$ intersect at right angle.