MATH 152, Fall 2019

Worksheet 9

1. The positions of two particles A and B at time t are given by

$$
\left\{\begin{aligned}
& \mathbf{r}(t)= \\
& \mathbf{R}(t)=1-\cos (t / 2), 4 \cos ^{2}(t / 2)-4 \cos (t / 2)> \\
& \mathbf{R}<\frac{9}{4} t-1, \frac{9}{4} t>
\end{aligned}\right.
$$

(a) At what points do the paths intersect?
(b)At what times do the paths intersect ?
2. Find the length of that portion of the curve

$$
\left\{\begin{array}{ccc}
x=6 t^{2} \\
y= & =\frac{4}{3} t^{3}-9 t^{2}
\end{array}\right.
$$

which lies between the origin and the point $(54,9)$.
3. Find the length of the logarithmic spiral $r(\theta)=e^{\theta}$, between $\theta=0$ and $\theta=\pi / 4$.
4. Show that the curve $r=\sin \theta \tan \theta$ (called a cissoid of Diocles) has the line $x=1$ as a vertical asymptote.
5. Show that the curves $r=a \sin \theta$ and $r=a \cos \theta$ intersect at right angle.

