MATH 152, Fall 2019

Worksheet 5

1. The recursive sequence given below is bounded and increasing. Find the limit of the sequence, if it exists.

$$
a_{1}=4, \quad a_{n+1}=8-\frac{15}{a_{n}}
$$

Explain clearly how you are using the hypothesis.

2. Determine if the following series is convergent or divergent.

$$
\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}
$$

3. Suppose the $n^{\text {th }}$ partial sum S_{n}, of the series $\sum_{k=1}^{\infty} a_{k}$, is equal to $4-n 3^{-n}$. Then, what is the formula for a_{k} and the SUM of the series $\left(\sum_{k=1}^{\infty} a_{k}=\right) ?$
4. Find the SUM of the geometric series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 3^{3 n-5}}{7^{2 n-2}}
$$

5. Find the SUM of the following series

$$
\sum_{n=2}^{\infty} \arctan \left(\frac{1}{n^{2}+n+1}\right)
$$

(Hint: $\left.\frac{1}{n^{2}+n+1}=\frac{1}{n(n+1)+1}=\frac{(n+1)-n}{n(n+1)+1}\right)$

