MATH 152, Fall 2019

Worksheet 7

1. Determine by comparison if the following series is convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{n^{3}}{n^{5}+3}
$$

2. For what values of p does the series

$$
\sum_{n=1}^{\infty} \frac{n^{p}}{2+n^{3}}
$$

is convergent?
3. Does the series

$$
\sum_{n=1}^{\infty} \frac{n+5}{n \sqrt{n+3}}
$$

converge or diverge?
4. We would like to estimate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}+1}$ by using the sum of the first ten terms. Of course, the exact error is the sum of all the terms from the 11 th on, i.e., $\sum_{n=11}^{\infty} \frac{1}{n^{4}+1}$. Estimate this error, by estimating this latter sum using an appropriate integral.
5. Does the series

$$
\sum_{n=1}^{\infty} \frac{k \sin ^{2}}{1+k^{3}}
$$

converge or diverge?
6. Determine whether the series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{3 n^{4}+1}}
$$

converge or diverge.

