
MATH 152, Fall 2018

Worksheet 8

1. Does the series
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converge absolutely or diverge?

2. For the next problem, show that the series converge to a some sum S, then find the smallest value of n so that
the n− th partial sum sn will guarantee the approximation of S to the required accuracy.
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; |S − sn| < 0.02

3. Use the Ratio Test to determine whether the series is convergent or divergent.

∞∑
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cos(nπ/3)
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4. Use the Ratio Test to determine whether the series is convergent or divergent.
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5. A series
∞∑

n=1
an is defined by the equations

a1 = 1; an+1 =
2 + cosn√

n
an

Determine whether the series is convergent or divergent.

6. Does the series

∞∑
n=3

sin(nπ/6)
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√
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converge absolutely, converge conditionally, or diverge?


