MATH 152, Fall 2018

Worksheet 8

1. Does the series

$$
\sum_{n=3}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n-2}
$$

converge absolutely or diverge?
2. For the next problem, show that the series converge to a some sum S, then find the smallest value of n so that the $n-t h$ partial sum s_{n} will guarantee the approximation of S to the required accuracy.

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt[4]{k+7}} ; \quad\left|S-s_{n}\right|<0.02
$$

3. Use the Ratio Test to determine whether the series is convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{\cos (n \pi / 3)}{n!}
$$

4. Use the Ratio Test to determine whether the series is convergent or divergent.

$$
1-\frac{2!}{1 \cdot 3}+\frac{3!}{1 \cdot 3 \cdot 5}-\frac{4!}{1 \cdot 3 \cdot 5 \cdot 7}+\cdots+(-1)^{n-1} \frac{n!}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}
$$

5. A series $\sum_{n=1}^{\infty} a_{n}$ is defined by the equations

$$
a_{1}=1 ; \quad a_{n+1}=\frac{2+\cos n}{\sqrt{n}} a_{n}
$$

Determine whether the series is convergent or divergent.
6. Does the series

$$
\sum_{n=3}^{\infty} \frac{\sin (n \pi / 6)}{1+n \sqrt{n}}
$$

converge absolutely, converge conditionally, or diverge?

