Math 152 Lab 1

Use Python to solve each problem.

1. The double-angle tangent formula is given by

$$
\tan (2 \theta)=\frac{2 \tan (\theta)}{1-\tan ^{2}(\theta)}
$$

Define a variable θ and verify this identity is true when $\theta=\frac{\pi}{7}$ and when $\theta=110^{\circ}$
(NOTE: θ may be defined as the numerical values OR symbolically as discussed in the Overview. Convert to radians first if necessary.
ALSO NOTE: you should either simplify your left and right-hand sides or, if that does not work, use the evalf command to convert your answers to decimals.)
2. An antiderivative of a function f is given by

$$
\int f(a x) d x=\frac{\sin (a x)}{a^{2}}-\frac{x \cos (a x)}{a}
$$

a) Find $\int f(0.6 x) d x$.
b) Use the Fundamental Theorem of Calculus to find $\int_{\pi / 3}^{3 \pi / 2} f(0.6 x) d x$. Again use evalf to give a decimal approximation.
3. A sphere has a radius of 24 cm .
a) Find the volume $\left(V=\frac{4}{3} \pi r^{3}\right)$ and surface area $\left(S=4 \pi r^{2}\right)$ of the sphere in cubic inches and square inches respectively.
b) Suppose the box in the Overview was cut from an $8 \frac{1}{2} \times 11$ inch sheet of cardboard. It would then have dimensions $x \times(8.5-2 x) \times(11-2 x)$. Find the value(s) of x for which the volume of this box is 1% of the volume of the sphere.
c) Find the value(s) of x for which the surface area of the box is 5% of the surface area of the sphere. (REMEMBER: the way the box was constructed, there is no top!)

