MATH 152 Lab 3

In this lab, we will approximate the value of a particular integral using various types of sums. Use Python to solve each problem.

1. Throughout the assignment, let

$$
f(x)=\arccos \left(\frac{1}{1+2 \cos x}\right)
$$

We want to estimate the value of

$$
\int_{0}^{\pi / 2} f(x) d x
$$

(a) Plot $f(x)$ on the interval $x \in\left[0, \frac{\pi}{2}\right]$. (If the plot function is giving you grief, consider using matplotlib.pyplot's plotting function instead of sympy's for a better picture.)
(b) The Left Endpoint Riemann Sum is a tool to approximate the value of an integral by summing up the areas of a series of n rectangles of equal width, whose top left corners lie along the function being integrated. The formula is given by

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \cdot \Delta x$. Throughout this lab, we will use $n=100$.
i. For the integral given in the problem (and using $n=100$), compute the value of Δx, and print it out as a floating point number. (Since this lab is all about approximation rather than exact answers, every value you output should be a floating point number!)
ii. Define a list of the n floating point values $f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n-1}\right)$. (You don't need to print it out.)
iii. Sum the list and multiply by Δx. The result will be the Left Endpoint Riemann Sum for $\int_{0}^{\pi / 2} f(x) d x$. (Make sure you see why!) Thus, it should be a floating point number whose value is fairly close to the actual value of the integral.
2. The Right Endpoint Riemann Sum approximates the value of an integral by summing the areas of a series of rectangles whose top right corners lie along the function. Thus the formula is

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

Compute the Right Endpoint Riemann sum for $\int_{0}^{\pi / 2} f(x) d x$ using $n=100$. Make sure you see how this is different from the left endpoint sum!
3. The Midpoint Sum is similar, but now the midpoints of the top of the rectangles lie along the function. Thus the formula is

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right) \Delta x
$$

Compute the Midpoint sum for $\int_{0}^{\pi / 2} f(x) d x$ using $n=100$.
(Problems 4-5 are on the next page.)
4. The Trapezoid Rule is a more sophisticated technique that approximates an integral by summing up the areas of a series of n trapezoids. The formula is given by

$$
\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-2}\right)+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
$$

(a) Compute the approximate value of $\int_{0}^{\pi / 2} f(x) d x$ using the Trapezoid Rule for $n=100$. It is possible to do this in Python using the formula above (for example, by writing a list comprehension and adjusting the endpoints as needed), but a simpler approach is to use the numpy.trapz function instead.
i. Define a list X of the $n+1$ floating point values $x_{0}, x_{1}, \cdots, x_{n}$.
ii. Define a list Y of the $n+1$ floating point values $f\left(x_{0}\right), f\left(x_{1}\right), \cdots, f\left(x_{n}\right)$.
iii. Call the trapz function with the signature numpy. $\operatorname{trapz}(\mathrm{Y}, \mathrm{X})$ to get the Trapezoid Rule approximation for the integral.
(b) Compute the average of the Left Endpoint and Right Endpoint Riemann Sums (which you found in Problems 1 and 2) for $\int_{0}^{\pi / 2} f(x) d x$. Do you notice anything about your answer?
5. Simpson's Rule is a much smoother technique that approximates an integral by summing up the areas under a series of quadratic functions. The formula is given by

$$
\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{3}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+4 f\left(x_{2}\right)+2 f\left(x_{3}\right)+4 f\left(x_{4}\right)+\cdots+4 f\left(x_{n-2}\right)+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
$$

(a) Just like the trapz function in Problem 4, there is a simps function that uses the same signature and outputs the Simpson's Rule approximation. Thus, use scipy.integrate.simps (Y, X) to get the Simpson's Rule approximation for the integral.
(b) The exact value of the integral, which is found using magic ${ }^{1}$, is

$$
\int_{0}^{\pi / 2} \arccos \left(\frac{1}{1+2 \cos x}\right)=\frac{\pi^{2}}{6}
$$

For all five of the approximations your team found in Problems 1-5, print out the floating point error (that is, the absolute value of the difference) between the approximate value found, and the actual value of the integral.

[^0]
[^0]: ${ }^{1}$ If you're really curious, see here https://t1. daumcdn.net/cfile/tistory/1176F84E4F31112B11

