MATH 152 Lab 4

In this lab, you will work various problems involving improper integrals and sequences. Use Python to solve each problem.

1. The Laplace Transform of a continuous function $f(t)$ is given by

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

In this problem, you will calculate the Laplace transforms of several functions using Python's integrate function. Remember to define the symbols s and t using the positive=True keyword argument. (Also, remember that ∞ is represented in Sympy as oo, and that you can do exponentation using the exp function.)
(a) $f(t)=1$
(b) $f(t)=(t+1)^{3}$
(c) $f(t)=t^{2} e^{-t}$
(d) $f(t)=\sin (t)$
2. Consider the integral

$$
I_{n}=\int_{0}^{1} \frac{1-x^{n}}{1-x} d x
$$

where n is a positive integer.
(a) Plot the function $f(x)=\frac{1-x^{4}}{1-x}$ in the window $x \in[0,1], y \in[0,5]$.
(b) Compute the value of the integral I_{n} for $n=1, n=2, n=3$, and $n=4$. You may use either exact or approximate integration.
(c) Compute $I_{2}-I_{1}, I_{3}-I_{2}$, and $I_{4}-I_{3}$. What do you think a general form for I_{n} might be?
3. Consider the related integral

$$
J_{n}=\int_{0}^{1} \frac{x^{n}-1}{\ln (x)} d x
$$

where n is a positive integer. (Notice the numerator and denominator are both negative when $0<x<1$, so the integrand is positive.)
(a) Plot the function $f(x)=\frac{x^{4}-1}{\ln (x)}$ in the window $x \in[0,1], y \in[0,5]$.
(b) Compute the value of the integral J_{n} for $n=1, n=2, n=3$, and $n=4$. You may use either exact or approximate integration.
(c) Compute $e^{J_{1}}, e^{J_{2}}$, and $e^{J_{3}}$. What do you think a general form for J_{n} might be?
4. Define the sequence $\left(a_{n}\right)$ by

$$
a_{n}=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)-\ln (n+1)
$$

where n is a positive integer.
(a) Compute the values of $a_{1}, a_{10}, a_{100}, a_{1000}$, and $a_{1000000}$. You may find it convenient to use a list comprehension to compute the sum in parentheses. Print out all these values as floating point approximations (do not print them out in exact form.) Does the sequence $\left(a_{n}\right)$ appear to converge or diverge?
(b) Compute the approximate value of the following improper integral (you may want to do the numerical integration using mpmath. quad):

$$
\int_{0}^{1}\left(\frac{1}{1-x}+\frac{1}{\ln (x)}\right) d x
$$

Do you notice anything about your answer? (And for an extra challenge, do you see how you might use the results of Problems 2 and 3 to explain this "coincidence"?)

