## MATH 152 Lab 6

In this lab, you will solve problems involving power series. Use Python to solve each problem. Throughout this lab, when defining the symbol $n$ for an index in a power series, make sure you use the keywords integer=True and positive=True. Otherwise you may get unexpected results!

1. Consider the power series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n+1}}{3 n+1}
$$

(a) Simplify $\left|\frac{a_{n+1}}{a_{n}}\right|$ and find the limit.
(b) State the values of $x$ for which the limit is less than 1 (you may do this by hand or by using reduce_inequalities in Python). Your answer will be an interval which is centered at $x=0$; how far from 0 is each endpoint? (This is called the radius of convergence of the series.) Substitute each endpoint into the series to determine whether the series converges or not.
(c) It can be shown that for values of $x$ where the series converges, it converges to

$$
f(x)=\frac{1}{3} \ln (x+1)-\frac{1}{6} \ln \left(x^{2}-x+1\right)+\frac{1}{\sqrt{3}} \arctan \left(\frac{2 x-1}{\sqrt{3}}\right)+\frac{\pi \sqrt{3}}{18}
$$

(We call these values of $x$ the interval of convergence of the series.) To illustrate this, find $s_{1}, s_{3}$, and $s_{5}$. Plot these polynomials and $f$ on the same set of axes in its interval of convergence $(y \in[-2,2])$. If you are getting a math domain error, try shortening the interval of convergence slightly (e.g. subtract something small like 0.01 from the radius).
(d) The power series

$$
\frac{1}{1+t^{3}}=\sum_{n=0}^{\infty}(-1)^{n} t^{3 n}
$$

is a simple geometric series. Using Python, integrate both $\frac{1}{1+t^{3}}$ and $(-1)^{n} t^{3 n}$ from $t=0$ to $x$. How might you use this result to find the limit of the series given in part (c)?
2. Consider the power series

$$
\sum_{n=0}^{\infty} \frac{(2 n)!}{n!^{2}} x^{n}
$$

(a) Simplify $\left|\frac{a_{n+1}}{a_{n}}\right|$ and find the limit.
(b) Find the radius of convergence of this series. Sum the series at each endpoint using the summation command to determine whether the series converges or diverges at that endpoint.
(c) It can be shown that the series converges to $f(x)=\frac{1}{\sqrt{1-4 x}}$ on its interval of convergence. To illustrate this, find $s_{5}, s_{10}$, and $s_{15}$. Plot these three polynomials and $f$ on the same set of axes in its interval of convergence $(y \in[0,5])$.
(Problem 3 on next page!)
3. Consider the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} x^{-\ln (n)}
$$

NOTE: Since the exponents of this series are not integers, the sum of this series isn't mathematically well-defined for negative values of $x$. So for this problem, you should define the symbol $x$ using positive=True.
(a) Simplify $\left|\frac{a_{n+1}}{a_{n}}\right|$ and find the limit. Does the ratio test tell you anything about this series?
(b) When $0<x \leq 1$, does $\left|a_{n}\right|$ go to zero? (If it helps, you can try defining $b_{n}=\left|a_{n}\right|$ with $x=0.9$ and using Python to find the limit.) What convergence test can you use to determine whether the series converges for $|x| \leq 1$ ?
(c) When $x>1$, does $\left|a_{n}\right|$ go to zero? (If it helps, you can try defining $c_{n}=\left|a_{n}\right|$ with $x=1.1$ and using Python to find the limit.) What convergence test can you use to determine whether the series converges for $x>1$ ?
(d) Based on your answers above, what is the interval of convergence of this series? (Note that since this is not a power series, there's no reason to expect the interval of convergence to be symmetric about any point.)
(e) Compute the sum of the series when $x$ is equal to the constant $e$. (Do you see how you might be able to use properties of logarithms to find this sum by hand?)

