Exam I Version B Solutions

1. C \[\int_0^1 \frac{6}{1 + x^2} \, dx = 6 \arctan x \bigg|_0^1 = 6 \left(\frac{\pi}{4} - 0 \right) = \frac{3\pi}{2}. \]

2. E \(\pi \) indicates that the volume is obtained using slicing with a radius of \(\sqrt{x(x-3)^2} = \sqrt{x(x-3)} \). Therefore, this solid is obtained by rotating about the \(x \)-axis the area between \(y = \sqrt{x(x-3)} \) and the \(x \)-axis.

3. B Integrate with respect to \(x \), i.e., Top function - Bottom function and note that these change at \(x = 0 \). The area is \(\int_{-\pi/2}^{\pi/2} \left(\frac{x}{2} - \sin x \right) \, dx + \int_0^a \left(\sin x - \frac{x}{2} \right) \, dx. \)

4. D \(\int \sin^2 x \, dx = \int \frac{1}{2} (1 - \cos 2x) \, dx = \frac{1}{2} \, x - \frac{1}{4} \, \sin 2x, \) so the identity used is \(\sin^2 x = \frac{1}{2} (1 - \cos 2x). \)

5. E Using Hooke’s Law \(F = kx \), we obtain \(20 = k \left(\frac{1}{3} \right) \), or \(k = 60. \) Then the work required is \(\int_0^{1/2} 60x \, dx = 30x^2 \bigg|_0^{1/2} = \frac{15}{2} \) ft - lbs.

6. C \(T_{avg} = \frac{1}{24 - 0} \int_0^{2\pi} \frac{80 + 10 \sin \left(\frac{\pi}{12} \right)}{24} \, dt = \frac{1}{24} (80t - \frac{120}{\pi} \cos \left(\frac{\pi}{12} \right)) \bigg|_0^{2\pi} = \frac{1}{24} (80 \cdot 24 - \frac{120}{\pi} (\cos 2\pi - \cos 0)) = 80. \) (NOTE that the answer could be obtained without integration by observing that you are averaging over one full period of the cosine function).

7. B Separate the fraction to yield \(\int \left(x^2 - \frac{1}{x} \right) \, dx = \frac{1}{3} x^3 \ln |x| + C. \)

8. E Let \(u = -x^2 \). Then \(du = -2x \, dx. \) When \(x = 0, u = 0, \) and when \(u = 2, x = -\sqrt{2}. \) So the integral becomes \(-\frac{1}{2} \int_{-\sqrt{2}}^0 x^2 e^u \, du. \) Changing boundaries and noting that \(x^2 = -u, \) the integral becomes \(\frac{1}{2} \int_{-\sqrt{2}}^0 -ue^u \, du = -\frac{1}{2} \int_{-\sqrt{2}}^0 ue^u \, du. \)

9. A Let \(y \) be the amount of cable pulled to the top, i.e., the distance the cable has traveled. Then the weight of the cable is given by \(F(y) = 80 - 4y, \) so the work required is \(W = \int_0^{10} (80 - 4y) \, dy = 80y - 2y^2 \bigg|_0^{10} = 600 \) ft - lbs.

10. C Use shells along the \(x \)-axis. Then the radius is \(y = x \) and the height is \(x^3 - 0, \) so the total volume is \(\int_0^1 2\pi x(x^3) \, dx = 2\pi x^5 \bigg|_0^1 = \frac{2\pi}{5}. \)

11. A The answer can be computed, but note that if the average value were \(\frac{1}{2}, \) the area of the rectangle at that height would be equal to the area under the curve. In this graph, the area of the rectangle is larger, so \(\frac{1}{2} (b - a) > \int_a^b f(x) \, dx, \) meaning \(\frac{1}{2} > f_{avg}, \) or \(f_{avg} < \frac{1}{2}. \)

12. D Let \(u = x^3 \) and \(dv = e^{-2x} \, dx. \) Then \(du = 3x^2 \, dx \) and \(v = \frac{1}{2} e^{-2x}. \) Apply the formula \(\int u \, dv = uv - \int v \, du \) to obtain \(-\frac{1}{2} x^3 e^{-2x} + \frac{3}{2} x^2 e^{-2x} \, dx. \)

13. E Convert to sines and cosines: \(\int_{\pi/3}^{\pi/2} \frac{\sin x}{\cos x} \, dx = \int_{\pi/3}^{\pi/2} \frac{\sin x}{\cos x} \, dx = -\cos x \bigg|_{\pi/3}^{\pi/2} = 0 + \frac{1}{2} = \frac{1}{2}. \)

14. Slice along the height of the tank. Then a slice \(y \) units above the bottom is a rectangular prism \(x \times 6 \times dy. \) So the volume is \(V = 6x \, dy. \) Using similar triangles, we obtain \(x = \frac{y}{3} \text{ or } x = \frac{2}{3} y, \) so the volume of the slice is \(4y \, dy. \) Then the force (weight) is \(1000g (4y) \, dy. \) Since we define \(y \) from the bottom of the tank, the distance it travels to leave the tank is \((3 - y) + (spout) = 4 - y. \) At the bottom of the water level, \(y = 0, \) and at the top of the water level (not the tank or spout!) \(y = 2. \) Then the work required to pump all the water out of the tank is \(\int_0^2 1000g (4y)(4 - y) \, dy. \) (NOTE: if you define \(y \) as the distance from the top of the tank, the \(y \) and \(3 - y \) terms reverse in the solution above to obtain \(\int_1^3 1000g(4)(3 - y)(y + 1) \, dy \).)
15. Slice perpendicular to the \(x \)-axis. Then the cross-
sections are square prisms with volume \((2y)(2y)(dx) = 4y^2 \, dx\). Using the equation of the ellipse we obtain \(y^2 = 16\left(1 - \frac{x^2}{4}\right) = 16 - 4x^2\), so the volume of the solid is \[\int_{-2}^{2} 4 (16 - 4x^2) \, dx = 2 \int_{0}^{2} (64 - 16x^2) \, dx\]

\[
= 2 \left(64x - \frac{16x^3}{3}\right) \bigg|_0^2 = 2 \left(128 - \frac{128}{3}\right) = \frac{512}{3}.
\]

16. The graph is shown below.

Since the bottom function changes, but the left and right functions do not, it is easiest to integrate with respect to \(y \), so the equations of our curves become \(x = y^2 \) (covering both square root curves) and \(x = -2y + 8 \). Equate to find the boundaries: \(y^2 = -2y + 8, y^2 + 2y - 8 = 0\), \((y + 4)(y - 2) = 0\), or \(y = -4\) and \(y = 2\). Then the area is given by

\[
A = \int_{-4}^{2} ((-2y + 8) - y^2) \, dy = -y^2 + 8y - \frac{1}{3}y^3 \bigg|_{-4}^{2} = \left(-4 + 16 - \frac{8}{3}\right) - \left(-16 - 32 + \frac{64}{3}\right) = 36.
\]

17. The graph is shown below.

(a) Since we have functions of \(y \) rotating about the \(y \)-axis, it is easiest to use slices. The volume of the slice is \(\pi R^2 h - \pi r^2 h \), where \(R \) =outer radius = \(4y^2\), \(r \) =inner radius = \(2y^2\), and \(h = dy \). Equate to find the boundaries: \(2y^3 = 4y^2\), \(2y^3 - 4y^2 = 0\), \(2y^2(y - 2) = 0\), so \(y = 0\) and \(y = 2 \). Then the volume is \[\int_{0}^{2} \pi((4y^2)^2 - (2y^3)^2) \, dy.\]

(b) Since we have functions of \(y \) rotating about a line parallel to the \(x \)-axis, it is easiest to use shells. The volume of the shell is \(2\pi rh \, dr \), where \(r = y - (-2) = y + 2 \), \(dr = dy \), and \(h = 4y^2 - 2y^3 \) (right function - left function). Then the volume of the solid is \[2\pi \int_{0}^{2} (y + 2)(4y^2 - 2y^3) \, dy.\]

18. .

(a) Integrate by parts with \(u = \ln x \) and \(dv = x^{1/4} \, dx \). Then \(du = \frac{1}{x} \, dx \) and \(v = \frac{4}{5} x^{5/4} \). Then

\[
\int x^{1/4} \ln x \, dx = \frac{4}{5} x^{5/4} \ln x - \int \frac{4}{5} x^{5/4} \cdot \frac{1}{x} \, dx = \frac{4}{5} x^{5/4} - \frac{4}{5} \int x^{1/4} \, dx = \frac{4}{5} x^{5/4} - \frac{16}{25} x^{5/4} + C.
\]

(b) Let \(u = 4 - x^3 \). Then \(du = -3x^2 \, dx \). When \(x = 0, u = 4 \), and when \(x = 1, u = 3 \). Substituting these into the integral yields \(-1\int_{0}^{1} x^3 \sqrt{u} \, du\).

Using our original substitution, \(x^3 = 4 - u \) and reversing the boundaries, our integral becomes

\[
\frac{1}{3} \int_{3}^{4} (4 - u)^{3/2} \, du = \frac{1}{3} \int_{0}^{1} (4u^{1/2} - u^{3/2}) \, du = \frac{1}{3} \left(\frac{8}{3} u^{3/2} - \frac{2}{5} u^{5/2}\right) \bigg|_{0}^{1} = \frac{8}{9} (4^{3/2} - \frac{2}{15} (4^{5/2}) - \frac{8}{9} (3^{3/2}) + \frac{2}{15} (3^{5/2}) = \frac{128}{45} - \frac{22}{15} \sqrt{3}.
\]

(c) \(\int_{0}^{\pi/4} \sec^4 x \, dx = \int_{0}^{\pi/4} \sec^2 x(\sec^2 x \, dx)\). Let \(u = \tan x \). Then \(du = \sec^2 x \, dx \). When \(x = 0, u = 0 \), and when \(x = \pi/4, u = 1 \). Use the identity \(\sec^2 x = \tan^2 x + 1 \) to obtain

\[
\int_{0}^{1} (u^2 + 1) \, du = \frac{1}{3} u^3 + u \bigg|_{0}^{1} = \frac{4}{3}.
\]