1. D \(|a_n| = \frac{n^2}{7n^3 + 1} \). As \(n \to \infty \), \(|a_n| \to 0 \), so \(a_n \to 0 \).

2. A \(\sum_{n=1}^{\infty} \frac{6n + 3}{n + 1} \) is divergent by the Test for Divergence. \(\sum_{n=1}^{\infty} \frac{6n + 3}{n(n + 1)} \) is divergent by the Limit Comparison Test with \(\sum_{n=1}^{\infty} \frac{6}{n} \). \(\sum_{n=1}^{\infty} \frac{6n + 3}{n^2(n + 1)} \) is convergent by the Comparison (or Limit Comparison) Test with \(\sum_{n=1}^{\infty} \frac{6}{n^2} \).

3. B \(S = \int 2\pi R \, ds \). Since the curve is rotated about the \(x \)-axis, \(R = y \). Choosing to evaluate arclength with respect to \(x \) (meaning \(R = \sqrt{r^2 - x^2} \)), \(ds = \sqrt{1 + \left(\frac{1}{2} (r^2 - x^2)^{-1/2} (-2x) \right)^2} \, dx = \sqrt{1 + \frac{x^2}{r^2 - x^2}} \, dx \). Therefore, \(S = \int_{-r}^{r} 2\pi \sqrt{r^2 - x^2} \sqrt{1 + \frac{x^2}{r^2 - x^2}} \, dx \).

4. A Since \(s_n \to \frac{1}{2} \), the series converges to \(\frac{1}{2} \).

5. A By \#4 the series is convergent. The Test for Divergence therefore says that \(a_n \to 0 \).

6. E \(s_n = \sum_{i=1}^{n} (e^{1/i} - e^{1/(i+1)}) = (e^{1/1} - e^{1/2}) + (e^{1/2} - e^{1/3}) + \ldots + (e^{1/n} - e^{1/(n+1)}) \). Cancelling terms (telescoping) yields \(s_n = e - e^{1/(n+1)} \). As \(n \to \infty \), \(\frac{1}{n+1} \to 0 \), so the series converges to \(e - e^0 = e - 1 \).

7. D The denominator contains a repeating linear factor and an irreducible quadratic factor, so the form of the partial fraction decomposition is \(\frac{A}{x - 4} + \frac{B}{(x - 4)^2} + \frac{C}{x^2 + 4x + 16} \).

8. B Complete the square to yield \(\int \frac{1}{\sqrt{(x - 4)^2 + 4}} \, dx \).
Then the desired substitution is \(x - 4 = 2 \tan \theta \).

9. E The series is geometric with \(a = 3 \) and \(r = \frac{2}{3} \).
Since \(|r| < 1 \), the series converges to \(\frac{3}{1 - \frac{2}{3}} = 9 \).

10. A Let \(u = -x^2 \). Then \(du = -2x \, dx \), so \(\int_{0}^{\infty} 6xe^{-x^2} \, dx = \lim_{a \to \infty} -3e^{-x^2} \bigg|_{0}^{a} = \lim_{a \to \infty} -3e^{-a^2} + 3 = 3 \).

11. C \(a_n = \ln \left(\frac{3n^2 + 1}{n^2 + 1} \right) \). As \(n \to \infty \), \(\frac{3n^2 + 1}{n^2 + 1} \to 3 \), so \(a_n \to \ln 3 \).

12. B \(a_1 = 3, a_2 = \frac{3}{3 - 1} = \frac{3}{2}, a_3 = \frac{3/2}{3/2 - 1} = 3, a_4 = \frac{3}{2} \), so the sequence oscillates between 3 and \(\frac{3}{2} \) and therefore diverges.

13. D \(\int_{0}^{1} \frac{1}{4x - 2} \, dx = \int_{0}^{1/2} \frac{1}{4x - 2} \, dx + \int_{1/2}^{1} \frac{1}{4x - 2} \, dx = \lim_{a \to 1/2^-} \int_{0}^{a} \frac{1}{4x - 2} \, dx + \lim_{a \to 1/2^+} \int_{a}^{1} \frac{1}{4x - 2} \, dx = \frac{1}{4} (\ln|4a - 2| - \ln|2|) + \frac{1}{4} (\ln|10| - \ln|4a - 2|) \), which diverges since \(\lim_{a \to 1/2} \ln|4a - 2| = -\infty \).

14. D The debris hits the ground when \(y = 0 \), or \(0 = \frac{9}{2} - \frac{1}{8} x^2 \), \(x^2 = 36 \), or \(x = 6 \).
\(\frac{dy}{dx} = -\frac{1}{4} x \), so the length of the curve is \(s = \int_{0}^{6} \sqrt{1 + \left(\frac{-1}{4} x \right)^2} \, dx = \int_{0}^{6} \sqrt{1 + \frac{x^2}{16}} \, dx \).

15. A Since the first term is \(a_1 \), the numerator of each term is \(n \) and the denominator (with slope = 2 and equal to 1 when \(n = 1 \)) is \(2n - 1 \). Therefore, \(a_n = \frac{n}{2n - 1} \).
16. \(ds = \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} \cdot \frac{dx}{dt} = e^t - e^{-t}, \) and \(\frac{dy}{dt} = 2. \) Then \(s = \int_0^2 \sqrt{(e^t - e^{-t})^2 + 2^2} dt = \int_0^2 \sqrt{2e^{2t} - 2 + e^{-2t} + 4} dt = \int_0^2 \sqrt{e^{2t} + 2 + e^{-2t}} dt = \int_0^2 (e^t + e^{-t}) dt = e^t - e^{-t}|_0^2 = (e^2 - e^{-2}) - (1 - 1).

17. \(S = \int 2\pi r \, ds. \) Since the curve is rotating about the \(y \)-axis, \(r = x. \) It is easier to integrate with respect to \(y, \) so \(r = y^3 \) and \(ds = \sqrt{\left(\frac{dx}{dy} \right)^2 + 1} dy = \sqrt{(3y^2)^2 + 1} dy = \sqrt{9y^4 + 1} dy. \) Therefore, \(S = \int_1^3 2\pi y^3 \sqrt{9y^4 + 1} dy. \) Let \(u = 9y^4 + 1. \) Then \(du = 36y^3 \, dy, \) so \(S = 2\pi \left(\frac{1}{36} \right) \left(\frac{2}{3} \right) (9y^4 + 1)^{3/2}|_1^3 = \frac{\pi}{27} (730^{3/2} - 10^{3/2}). \)

18. We have a function of \(x \) rotating around the \(x \)-axis, so we use slices. Then \(V = \pi r^2 h, \) with \(h = dx \) and \(r = y = \frac{1}{(16 - x^2)^{3/4}}. \) Therefore, \(V = \int_0^2 \pi \left(\frac{1}{(16 - x^2)^{3/4}} \right)^2 dx = \int_0^2 \pi \frac{1}{(16 - x^2)^{3/2}} dx. \) Let \(x = 4 \sin \theta. \) Then \(dx = 4 \cos \theta \, d\theta. \) If \(x = 0, \theta = 0, \) and if \(x = 2, \sin \theta = \frac{1}{2} \) so \(\theta = \frac{\pi}{6}. \) Substituting in the integral yields

\[
\pi \int_0^{\pi/6} \frac{1}{(16 - 16 \sin^2 \theta)^{3/2}} \cdot 4 \cos \theta \, d\theta = \pi \int_0^{\pi/6} \frac{4 \cos \theta}{64 \cos^3 \theta} \, d\theta = \frac{\pi}{16} \int_0^{\pi/6} \sec^2 \theta \, d\theta = \frac{\pi}{16} \tan \theta|_0^{\pi/6} = \frac{\pi}{16} \left(\frac{\sqrt{3}}{3} - 0 \right) = \frac{\sqrt{3}\pi}{48}.
\]

19. The given fraction is improper, so we do long division to obtain \(\int \left(1 + \frac{-4x + 4}{x^3 + 4x} \right) dx. \)

We use partial fractions on the remainder: \(-4x + 4 \) \(= \frac{A}{x} + \frac{Bx + C}{x^2 + 4}. \) Clearing the fractions yields \(-4x + 4 = A(x^2 + 4) + (Bx + C)(x). \) If \(x = 0, 4 = 4A, \) or \(A = 1. \) Expanding with \(A = 1 \) yields \(-4x + 4 = x^2 + 4 + Bx^2 + Cx. \) From the coefficients of \(x^2, \) \(0 = 1 + B, \) or \(B = -1. \) From the coefficients of \(x, -4 = C. \) Therefore, \(\int \frac{x^3 + 4}{x^3 + 4x} \, dx = \int \left(1 + \frac{1}{x} - \frac{x}{x^2 + 4} - \frac{4}{x^2 + 4} \right) \, dx = x + \ln |x| - \frac{1}{2} \ln |x^2 + 4| - 4 \cdot \frac{1}{2} \arctan \left(\frac{x}{2} \right) + C. \)

(a) Can be done using the Integral Test, Comparison Test with \(\sum_{n=1}^{\infty} \frac{2}{n^3}, \) or Limit Comparison Test with \(\sum_{n=1}^{\infty} \frac{2}{n^3}. \)

(b) The Remainder Estimate for the Integral Test states that \(s - s_N \leq \int_N^{\infty} f(x) \, dx. \) Thus, \(s - s_9 \leq \int_9^{\infty} \frac{2}{(x+1)^3} \, dx. \)

\[
\int 2(x+1)^{-3} \, dx = -\frac{1}{2} (x+1)^{-2}, \quad \text{so} \quad s - s_9 \leq \lim_{a \to \infty} -\frac{1}{2(a+1)^2} + \frac{1}{2(10)^2}, \quad \text{or} \quad s - s_9 \leq \frac{1}{2(10)^2}
\]