Instructions
Once you start the exam, you must finish. The timer will not stop if you take a break. You may use your notes, calculator, and book. Remember that Webassign is stupid. It can not understand what you meant to type. Be careful with how you enter your answers. Good Luck.

1. Evaluate the integral using the indicated trigonometric substitution. (Use C for the constant of integration.)

$$\int \frac{x^3}{\sqrt{x^2 + 100}} \, dx, \quad x = 10 \tan(\theta)$$

Sketch and label the associated right triangle.

$$\sqrt{x^2 + 100}$$

x

10

θ

10

θ

2. Evaluate the integral.

$$\int_{2}^{9} \frac{dx}{(x^2 - 1)^{3/2}}$$
3. Question Details
Evaluate the integral. (Use C for the constant of integration.)
\[
\int \frac{x}{\sqrt{x^2 - 7}} \, dx
\]

4. Question Details
Evaluate the integral.
\[
\int_{1/2}^{\sqrt{2/4}} \frac{dx}{\sqrt{16x^2 - 1}}
\]

5. Question Details
Evaluate the integral.
\[
\int_{0}^{1} \frac{12}{4x^2 + 5x + 1} \, dx
\]

6. Question Details
Evaluate the integral.
\[
\int_{0}^{1} \frac{x - 4}{x^2 - 5x + 6} \, dx
\]

7. Question Details
Write out the form of the partial fraction decomposition of the function (as in this example). Do not determine the numerical values of the coefficients.
(a) \[
\frac{x^4 - 2x^3 + x^2 + 2x - 1}{x^2 - 2x + 1}
\]
(b) \[
\frac{x^2 - 1}{x^3 + x^2 + x}
\]
8. Question Details

Determine whether the integral is convergent or divergent.

\[\int_{9}^{\infty} \frac{1}{(x - 8)^{3/2}} \, dx \]

- convergent
- divergent

If it is convergent, evaluate it. (If the quantity diverges, enter DIVERGES.)

9. Question Details

Determine whether the integral is convergent or divergent.

\[\int_{0}^{\infty} \frac{x^2}{\sqrt{5 + x^4}} \, dx \]

- convergent
- divergent

If it is convergent, evaluate it. (If the quantity diverges, enter DIVERGES.)

10. Question Details

Determine whether the integral is convergent or divergent.

\[\int_{-\infty}^{0} ze^{3z} \, dz \]

- convergent
- divergent

If it is convergent, evaluate it. (If the quantity diverges, enter DIVERGES.)
11. **Question Details**
Determine whether the integral is convergent or divergent.
\[\int_{-2}^{14} \frac{13}{\sqrt{x} + 2} \, dx \]
- convergent
- divergent

If it is convergent, evaluate it. (If the quantity diverges, enter DIVERGES.)

12. **Question Details**
Use the Comparison Theorem to determine whether the integral is convergent or divergent.
\[\int_{0}^{\pi} \frac{38 \sin^2(x)}{\sqrt{x}} \, dx \]
- convergent
- divergent

13. **Question Details**
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.)
\[a_n = \frac{4 + 8n^2}{n + 8n^2} \]
\[\lim_{n \to \infty} a_n = \]

14. **Question Details**
Use a graph of the sequence to decide whether the sequence is convergent or divergent. If the sequence is convergent, guess the value of the limit from the graph and then prove your guess. (If an answer does not exist, enter DNE.)
\[a_n = 1 + (-2/e)^n \]
\[\lim_{n \to \infty} a_n = \]

15. **Question Details**
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.)
\[a_n = \ln(n + 5) - \ln(n) \]
\[\lim_{n \to \infty} a_n = \]
16. Question Details

SCalcET8 11.2.003. [3798113]

Calculate the sum of the series \(\sum_{n=1}^{\infty} a_n \) whose partial sums are given.

\[s_n = 3 - 9(0.8)^n \]

17. Question Details

SCalcET8 11.2.015. [3798788]

Let \(a_n = \frac{5n}{7n + 1} \)

(a) Determine whether \(\{a_n\} \) is convergent.

- convergent
- divergent

(b) Determine whether \(\sum_{n=1}^{\infty} a_n \) is convergent.

- convergent
- divergent

18. Question Details

SCalcET8 11.2.043. [3798856]

Determine whether the series is convergent or divergent by expressing \(s_n \) as a telescoping sum (as in Example 8).

\[\sum_{n=4}^{\infty} \frac{6}{n^2 - 1} \]

- convergent
- divergent

If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

19. Question Details

SCalcET8 11.2.057. [3798471]

Find the values of \(x \) for which the series converges. (Enter your answer using interval notation.)

\[\sum_{n=1}^{\infty} (-5)^n x^n \]

Find the sum of the series for those values of \(x \).
20. Question Details

(a) What is the difference between a sequence and a series?

- A series is an ordered list of numbers whereas a sequence is the sum of a list of numbers.
- A sequence is an ordered list of numbers whereas a series is an unordered list of numbers.
- A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.
- A series is an unordered list of numbers whereas a sequence is the sum of a list of numbers.
- A sequence is an unordered list of numbers whereas a series is the sum of a list of numbers.

(b) What is a convergent series? What is a divergent series?

- A convergent series is a series for which \(\lim_{n \to \infty} a_n \) exists. A series is convergent if it is not divergent.
- A series is divergent if the nth term converges to zero. A series is convergent if it is not divergent.
- A series is divergent if the sequence of partial sums is a convergent sequence. A series is convergent if it is not divergent.
- A series is convergent if the nth term converges to zero. A series is divergent if it is not convergent.
- A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.

21. Question Details

Determine whether the series is convergent or divergent.

\[\sum_{n=2}^{\infty} \frac{2}{n \ln(n)} \]

- convergent
- divergent

22. Question Details

Consider the following function.

\[f(x) = \frac{9 \cos(tx)}{\sqrt{x}} \]

What conclusions can be made about the series \(\sum_{n=1}^{\infty} \frac{9 \cos(tn)}{\sqrt{n}} \) and the Integral Test?

- The Integral Test can be used to determine whether the series is convergent since the function is positive and decreasing on \([1, \infty)\).
- The Integral Test can be used to determine whether the series is convergent since the function is not positive and not decreasing on \([1, \infty)\).
- The Integral Test can be used to determine whether the series is convergent since it does not matter if the function is positive or decreasing on \([1, \infty)\).
- The Integral Test cannot be used to determine whether the series is convergent since the function is not positive and not decreasing on \([1, \infty)\).
- There is not enough information to determine whether or not the Integral Test can be used or not.
Assignment Details

Name (AID): 152 Test 2 (16403731)
Submissions Allowed: 2
Category: Exam 2
Code:
Locked: Yes
Author: Kahlig, Joe (kahlig@math.tamu.edu)
Last Saved: Mar 25, 2020 02:11 PM CDT
Permission: Protected
Randomization: Person
Which graded: Last

Feedback Settings

Before due date
Question Score
Assignment Score
Question Part Score
Mark
Response
Save Work
After due date
Question Score
Assignment Score
Publish Essay Scores
Key
Question Part Score
Mark
Response