MATH 677 - Mathematical Foundations for Data Science - Spring 2023
Credits 3. 3 Lecture Hours.
Linear systems; least squares problems; eigenvalue decomposition; singular value decomposition; Perron–Frobenius theory; dynamic programming; convex optimization; gradient descent; linear programming; semidefinite programming; compressive sensing.
Prerequisites: MATH 304, MATH 309, MATH 311, MATH 323, or equivalent; admission to master of science in data science or master of science in quantitative finance.
Sections
Sec | Instructor | Lecture | |
---|---|---|---|
699 | Kuchment,Peter | N/A-N/A ONLINE |
|
700 | Kuchment,Peter | N/A-N/A ONLINE |