Applied Analysis Part
 January 10, 2024

Name: \qquad

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let \mathcal{P} be the set of all polynomials.
(a) State and sketch a proof of the Weierstrass Approximation Theorem. ${ }^{1}$
(b) Use (a) to show that \mathcal{P} is dense in $L^{2}[0,1]$. (You may use the the fact that $C[0,1]$ is dense in $L^{2}[0,1]$.)
(c) Let $U:=\left\{p_{n}\right\}_{n=0}^{\infty}$ be the orthonormal set of polynomials obtained from \mathcal{P} via the GramSchmidt process. Show that U is a complete set in $L^{2}[0,1]$.

Problem 2. Let \mathcal{D} be the set of compactly supported functions defined on \mathbb{R} and let \mathcal{D}^{\prime} be the corresponding set of distributions.
(a) Define convergence in \mathcal{D} and \mathcal{D}^{\prime}.
(b) Show that $\psi \in \mathcal{D}$ satisfies $\psi=\phi^{\prime \prime}$ for some $\phi \in \mathcal{D}$ if and only if

$$
\int_{-\infty}^{\infty} \psi(x) d x=0 \text { and } \int_{-\infty}^{\infty} x \psi(x) d x=0 .
$$

(c) Find all distributions $T \in \mathcal{D}^{\prime}$ such that $T^{\prime \prime}(x)=\delta(x+1)-2 \delta(x)+\delta(x-1)$.

Problem 3. Let \mathcal{H} be a Hilbert space and let $\mathcal{C}(\mathcal{H})$ be the set of compact operators on \mathcal{H}.
(a) State and prove the Fredholm Alternative.
(b) State the Closed Range Theorem.
(c) Let $\mathcal{H}=L^{2}[0,1]$. Define the kernel $k(x, y):=x^{3} y^{2}$ and let $K u(x)=\int_{0}^{1} k(x, y) u(y) d y$. Show that K is in $\mathcal{C}(\mathcal{H})$.
(d) Let $L=I-\lambda K, \lambda \in \mathbb{C}$, with K as defined in part (c) above. Find all λ for which $L u=f$ can be solved for all $f \in L^{2}[0,1]$. For these values of λ, find the resolvent $(I-\lambda K)^{-1}$.
Problem 4. Consider the kernel $k(x, y)=\sum_{n=0}^{\infty}(1+n)^{-2} P_{n+1}(x) P_{n}(y)$, where the P_{n} 's are the orthogonal set of Legendre polynomials, relative to $L^{2}[-1,1]$. They are normalized so that $\int_{-1}^{1} P_{n}(x)^{2} d x=\frac{2}{2 n+1}$.
(a) Show that $K u(x)=\int_{-1}^{1} k(x, y) u(y) d y$ is a compact operator on $L^{2}[-1,1]$.
(b) Determine the spectrum of K.

[^0]
NUMERICAL ANALYSIS QUALIFIER

January, 2024
Problem 1. Let T be the unit triangle in \mathbb{R}^{2}, with vertices $v_{1}=(0,0), v_{2}=(1,0)$, and $v_{3}=(0,1)$ and edges $e_{1}=v_{1} v_{2}, e_{2}=v_{2} v_{3}$ and $e_{3}=v_{3} v_{1}$. Let z_{i} be the midpoint of the edge e_{i}. Let $T W_{0}=\{(a-c y, b+c x): a, b, c \in \mathbb{R}\}$ (so that members of $T W_{0}$ are vector functions over T), and $\left.\left[\mathbb{P}_{0}\right]^{2} \subsetneq T W_{0} \subsetneq\left[\mathbb{P}_{1}\right]^{2}\right)$. Finally, let $\sigma_{i}(\vec{u})=\vec{u}\left(z_{i}\right) \cdot \vec{t}_{i}$, where \vec{t}_{i} is the counterclockwisepointing unit vector tangent to ∂T on e_{i}, and let $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$.
(a) Show that $\left(T, T W_{0}, \Sigma\right)$ is a finite element triple.
(b) Find a basis $\left\{\vec{\varphi}_{1}, \vec{\varphi}_{2}, \vec{\varphi}_{3}\right\}$ for $T W_{0}$ that is dual to Σ, that is, $\sigma_{i}\left(\vec{\varphi}_{j}\right)=\delta_{i j}$ with $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ otherwise.
(c) Let $(\Pi \vec{u})(x)=\sum_{i=1}^{3} \sigma_{i}(\vec{u}) \vec{\varphi}_{i}(x), x \in T$ and $\vec{u} \in\left[H^{2}(T)\right]^{2}$. Show that

$$
\|\vec{u}-\Pi \vec{u}\|_{\left[L_{2}(T)\right]^{2}} \leq C\left(|\vec{u}|_{\left[H^{1}(T)\right]^{2}}+|\vec{u}|_{\left[H^{2}(T)\right]^{2}}\right), \quad \vec{u} \in\left[H^{2}(T)\right]^{2}
$$

Note: You may use standard analysis results such as trace, Sobolev, and Poincarè inequalities and the Bramble-Hilbert Lemma without proof, but specify precisely which results you are using.

Problem 2. Consider the following initial boundary value problem: find a solution $u(x, t)$ such that

$$
\left\{\begin{aligned}
\frac{\partial}{\partial t}(u-\Delta u)-\mu \Delta u & =f, \quad \text { for } x \in \Omega, 0<t \leq T \\
u(x, t) & =0, \quad \text { for } x \in \partial \Omega, 0<t \leq T \\
u(x, 0) & =u_{0}(x), \quad \text { for } x \in \Omega
\end{aligned}\right.
$$

Here, $\Omega \subset \mathbb{R}^{2}$ is a polygonal domain, $\partial \Omega$ its boundary, $\mu>0$ a given constant, and $f(x, t)$ and $u_{0}(x)$ are given right hand side and initial data functions.

In the following let $V=H_{0}^{1}(\Omega)$ and let $V_{h} \subset V$ be a finite element approximation space with (nodal) basis $\varphi_{i}^{h}(x), i=0, \ldots, \mathcal{N}$. Let $t_{0}=0<t_{1}<\ldots<t_{N}=T$ be a partition of $[0, T]$ into N uniform subintervals with time step size $k=t_{n+1}-t_{n}$.
(a) For given $u^{n} \in V$ at time t_{n} find the semi-discrete weak formulation of the initial boundary value problem where the forward Euler method is used to compute a value $u^{n+1} \in V$ at time t_{n+1}.
(b) Introduce matrices $M_{h} \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}$ with $\left(M_{h}\right)_{i j}=\left(\varphi_{i}^{h}, \varphi_{j}^{h}\right)_{L^{2}(\Omega)}$, and $A_{h} \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}$ with $\left(A_{h}\right)_{i j}=\left(\nabla \varphi_{i}^{h}, \nabla \varphi_{j}^{h}\right)_{L^{2}(\Omega)^{3}}$. Verify that the fully discrete scheme of the initial boundary value problem can be written as follows: Given a coefficient vector $U^{n} \in \mathbb{R}^{\mathcal{N}}$ at time t_{n} compute $U^{n+1} \in \mathbb{R}^{\mathcal{N}}$ for time t_{n+1} as follows:

$$
\left(M_{h}+A_{h}\right) \frac{U^{n+1}-U^{n}}{k}+\mu A_{h} U^{n}=M_{h} F^{n}
$$

where the coefficient vector $F^{n} \in \mathbb{R}^{n}$ is formed by setting

$$
\left(M_{h} F^{n}\right)_{i}=\left(f\left(., t_{n}\right), \varphi_{i}^{h}\right)_{L^{2}(\Omega)}, \quad i=1, \ldots, \mathcal{N} .
$$

(c) Now introduce an orthonormal basis of eigenvectors $\Psi^{j} \in \mathbb{R}^{\mathcal{N}}$ with eigenvalues $\lambda_{j}>0$ of the following generalized eigenvalue problem:

$$
A_{h} \Psi^{j}=\lambda_{j} M_{h} \Psi^{j}, \quad \text { and } \quad\left(\Psi^{j}\right)^{T} M_{h} \Psi^{j}=\delta_{i j}, \quad \text { for } i, j=1, \ldots, \mathcal{N} .
$$

Here, $\delta_{i j}$ denotes the Kronecker delta. Expand

$$
U^{n}=\sum_{j=1}^{\mathcal{N}} c_{j}^{n} \Psi^{j}, \quad F^{n}=\sum_{j=1}^{\mathcal{N}} d_{j}^{n} \Psi^{j} . \quad \text { and set } \quad \delta_{j}=\frac{1+(1-k \mu) \lambda_{j}}{1+\lambda_{j}}
$$

Find the Courant (CFL) condition for stability and prove that

$$
\left|c_{j}^{n+1}\right| \leq \delta_{j}\left|c_{j}^{n}\right|+\frac{k}{1+\lambda_{j}}\left|d_{j}^{n}\right| \quad \text { for } j=1, \ldots, \mathcal{N}
$$

(d) Derive a stability estimate that relates $\left|c_{j}^{n+1}\right|$ to the initial coefficient c_{j}^{0} and right hand side coefficients $d_{j}^{\nu}, \nu=0, \ldots, n$.

Problem 3. Consider the interval $D:=(0,1)$. Let $\mu \in \mathbb{R}_{>0}, \beta \in \mathbb{R}, \nu \in \mathbb{R}_{>0}$ and $f \in L^{1}(D)$ (note carefully what regularity is assumed of f). Consider the equation

$$
\begin{align*}
& \mu u(x)+\beta \partial_{x} u(x)-\nu \partial_{x x} u(x)=f(x), \quad \text { for a.e. } x \in D, \tag{3.1}\\
& u(0)=a, \quad u(1)=b . \tag{3.2}
\end{align*}
$$

Let I be a positive natural number. Let $h:=\frac{1}{I+1}$. Let \mathcal{T}_{h} be the uniform mesh composed of the cells $\left[x_{i}, x_{i+1}\right]$, with $x_{i}:=i h$, for all i in $\{0 \ldots I+1\}$. Let $P_{1}\left(\mathcal{T}_{h}\right)$ be the Lagrange finite element space composed of the scalar-valued functions that are continuous and piecewise linear on the mesh \mathcal{T}_{h}. We also denote $P_{1,0}\left(\mathcal{T}_{h}\right):=P_{1}\left(\mathcal{T}_{h}\right) \cap H_{0}^{1}(D)$.
(a) Let $u_{a b}(x)=a(1-x)+b x$ be the natural linear lifting of the boundary conditions. Let $u_{0}(x):=u(x)-u_{a b}(x)$ so that $u_{0}(0)=0$ and $u_{0}(1)=0$. Write the weak form of the problem for u_{0} where the trial and test spaces are $H_{0}^{1}(D)$. Use the norm $\|v\|_{H^{1}(D)}:=$ $\left(\|v\|_{L^{2}(D)}^{2}+\left\|\partial_{x} v\right\|_{L^{2}(D)}^{2}\right)^{\frac{1}{2}}$.
(b) Prove that the proposed weak form of the problem is well-posed (Hint: You may invoke the boundedness of the embedding $H^{s}(D) \subset L^{\infty}(D)$ when $s>\frac{1}{2}$. Recall also that $\min (\mu, \nu)>0$.)
(c) Write the Galerkin formulation of the weak formulation proposed in part (a) in the space $P_{1,0}\left(\mathcal{T}_{h}\right):=P_{1}\left(\mathcal{T}_{h}\right) \cap H_{0}^{1}(D)$ and denote by $u_{h, 0}$ the approximation of u_{0}.
(d) Denote $u_{h}:=u_{h, 0}+u_{a b}$. Prove that

$$
\left\|u-u_{h}\right\|_{H^{1}(D)} \leq C \inf _{\chi \in P_{1}\left(\mathcal{T}_{h}\right)}\|u-\chi\|_{H^{1}(D)}
$$

Explain why we cannot immediately conclude using the usual arguments that

$$
\left\|u-u_{h}\right\|_{H^{1}(D)} \leq C(u) h
$$

where $C(u)$ depends on u. (Think carefully about what must be true about u in order for these estimates to hold.)

[^0]: ${ }^{1}$ You may use these identities involving the Bernstein polynomials. The last two identities start the sum at $j=0$, rather than $j=1$.

 $$
 1=\sum_{j=0}^{n} \beta_{j, n}(x), \quad x=\sum_{j=0}^{n} \frac{j}{n} \beta_{j, n}(x) \quad \frac{1}{n} x+\left(1-\frac{1}{n}\right) x^{2}=\sum_{j=0}^{n} \frac{j^{2}}{n^{2}} \beta_{j, n}(x) .
 $$

