- Justify all your assertions.
- There are 10 problems. Try to solve all of them and make solutions and proofs as complete as possible.
- Use a separate sheet for each problem.
- Write your name on the top right corner of each page.

1. Let X and Y be topological spaces, and let $\pi_{X}: X \times Y \rightarrow X$ be the projection on the first coordinate, that is, $\pi_{X}(x, y)=x$ for $(x, y) \in X \times Y$. Prove or disprove the following assertions:
(a) π_{X} is a continuous map.
(b) π_{X} is an open map.
(c) π_{X} is a closed map.
(d) π_{X} is a quotient map.
2. The branching line B is the topological space obtained as the quotient space of $\mathbb{R} \times\{0,1\}$ with respect to the equivalence relation $(x, 0) \sim(x, 1)$ if and only if $x<0$. Prove or disprove the following assertions:
(a) B is path-connected.
(b) B is locally compact, that is, every point has a neighborhood which is itself contained in a compact set.
(c) B is Hausdorff.
(d) B is a T_{1} space, that is, for every pair of distinct points p and $q \in B$, there exist a neighborhood U_{p} of p and a neighborhood U_{q} of q such that $q \notin U_{p}$ and $p \notin U_{q}$.
(e) B is second-countable.
3. Let (X, d) be a metric space, and let Y be a non-empty subset of X. Let $f: X \rightarrow \mathbb{R}_{\geq 0}$ be the distance function from Y, that is,

$$
f(x)=\inf \{d(x, y) \mid y \in Y\} .
$$

Show that $f(x)=0$ if and only if $x \in \bar{Y}$, where \bar{Y} denotes the closure of Y.
4. Let $p: E \rightarrow B$ be a covering space. Fix a basepoint $b_{0} \in B$, and suppose $p^{-1}\left(b_{0}\right)$ has k elements.
(a) Assume B is connected. Show that $p^{-1}(b)$ has also k elements, for every $b \in B$. Prove the assertion under the assumption that B is path-connected to get half points.
(b) Assume B is compact. Show that E is also compact.
5. (a) Compute the fundamental group of the 2 -sphere with k points removed.
(b) Let $\ell_{1}, \ldots, \ell_{n}$ be n distinct lines in \mathbb{R}^{3} passing through the origin. Let L be the union of these lines, that is, $L=\bigcup_{i=1}^{n} \ell_{i}$. Compute the fundamental group of $\mathbb{R}^{3} \backslash L$.
6. (a) Formulate the implicit function theorem (you do not have to prove it).
(b) Let n be a positive integer and let $O(n)$ denote the set of orthogonal $n \times n$ matrices as a subset of the set of all $n \times n$ matrices $M(n, n)$ (which can be identified with the Euclidean space $\left.\mathbb{R}^{n^{2}}\right)$. Prove that $O(n)$ is an embedded submanifold of $M(n, n)$ and find its dimension.
7. Let M and N be smooth manifolds and let $f: M \rightarrow N$ be a smooth map.
(a) Define the map $f^{*}: \Omega^{k}(N) \rightarrow \Omega^{k}(M)$ that pulls k-forms on N back to k-forms on M.
(b) For a 1-form $\omega \in \Omega^{1}(N)$, show that

$$
d\left(f^{*} \omega\right)=f^{*}(d \omega)
$$

8. Consider the plane \mathbb{R}^{2} (with coordinates (x, y)) equipped with the metric

$$
\frac{4}{\left(1+x^{2}+y^{2}\right)^{2}}\left(d x^{2}+d y^{2}\right)
$$

Find the Gaussian curvature of this metric at each point.
9. Equip the Euclidean space \mathbb{R}^{3} with cylindrical coordinates (r, θ, z) (so that $x=r \cos \theta$, $y=r \sin \theta, z=z)$. Let Δ be the distribution spanned by X and Y, where

$$
X=\frac{\partial}{\partial r}, \quad \text { and } \quad Y=\frac{\partial}{\partial \theta}-r^{2} \frac{\partial}{\partial z}
$$

Is the distribution Δ integrable?
10. Let ω be a closed 1 -form (so $d \omega=0$) on a smooth manifold M. Prove that ω is exact (so $\omega=d f$ for some smooth function f on M) if and only if

$$
\int_{\gamma} \omega=0
$$

for every smooth closed curve γ on M.

