Texas A&M University Algebra Qualifying Exam Friday, August 14, 2015

Instructions: There are 8 problems, some of which have multiple parts. Please attempt them all.

- Also: Please start each problem on a new page, clearly writing the problem number and your name on that page.
 - Electronic or written assistance of any kind (such as calculators, cell phones, computers, notes, or books) is forbidden.
 - Please do not interpret any problem in a way that renders it trivial.
 - Unless otherwise specified, we assume rings to be commutative, with multiplicative identity. For any ring R we let R^* denote the group of units of R, we let $R^{n \times n}$ denote the set of $n \times n$ matrices with entries in R, and we let \mathbb{F}_q denote the (finite) field with q elements. Also, we assume all R-modules are unital left R-modules. Finally, for any subset $S \subseteq R$ we use $\langle S \rangle$ to denote the ideal generated by S.
- 1. Please prove that, up to isomorphism, there are at most 4 groups of order 306 containing an element of order 9.
- **2.** Suppose $A \in \mathbb{Z}^{n \times n}$ has (i, j)-entry $a_{i,j}$ for all i, j, and $x = (x_1, \ldots, x_n)$. Let us then define x^A to be the vector of (formal) monomials $(x_1^{a_{1,1}} \cdots x_n^{a_{n,1}}, \ldots, x_1^{a_{1,n}} \cdots x_n^{a_{n,n}})$. One can prove (and you may assume) that $x^{AB} = (x^A)^B$ for any $B \in \mathbb{Z}^{n \times n}$.
 - (a) Please prove that when $\det(A) \in \{-1, 1\}$, and K is a field, the function $m_A(x) := x^A$ defines an automorphism of $(K^*)^n$.
 - (b) For arbitrary $A \in \mathbb{Z}^{n \times n}$ the function $m_A(x) := x^A$ happens to define an endomorphism of the subgroup $\{-1, 1\}^n$ of $(\mathbb{Q}^*)^n$. Please find, and prove, an explicit formula for the cardinality of the quotient group $\{-1, 1\}^n / \text{Ker}(m_A)$ as a function of the $(\mathbb{Z}/2\mathbb{Z})$ -rank of the mod 2 reduction of A.
- **3.** Let K be a field.
 - (a) Please prove that, given any non-zero vector $v \in K^n$, v can be completed to a basis, i.e., we can find $v_2, ..., v_n \in K^n$ with $\{v, v_2, ..., v_n\}$ a basis for K^n .
 - (b) Under the additional assumption that K is algebraically closed, please prove that, given any $A \in K^{n \times n}$, there are matrices $U, V \in K^{n \times n}$, with V invertible and U upper-triangular, such that $A = V^{-1}UV$.
- **4.** Given any ring R, and R-modules A, A', B, B', C, C', and R-module homomorphisms $f, f', g, g', \alpha, \beta, \gamma$ such that α and γ are monomorphisms and the diagram

	• • • •	12	$\xrightarrow{g} C \longrightarrow \mathbf{O}$
(1)		β	$\xrightarrow{g'} C' \longrightarrow \mathbf{O}$
	$\mathbf{O} \longrightarrow \dot{A'} -$	$\xrightarrow{f'} B' -$	$\xrightarrow{g'} C' \longrightarrow \mathbf{O}$

commutes and (1) has exact top and bottom rows, please prove that β is a monomorphism.

- **5.** Suppose $p, q \in \mathbb{N}$, p is prime, q is a prime power, and \mathbb{F}_q is a field with exactly q elements. Also let $\phi^{(k)}$ denote the k-fold composition of an endomorphism ϕ with itself.
 - (a) Please prove that if $x^{p^n} x 1$ is irreducible in $\mathbb{F}_p[x]$ then (i) $\phi(y) := y^{p^n}$ defines an automorphism of $\mathbb{F}_p[x]/\langle x^{p^n} x 1 \rangle$, and (ii) $\phi^{(p)}$ is the identity map on $\mathbb{F}_p[x]/\langle x^{p^n} x 1 \rangle$.
 - (b) Suppose f is irreducible in $\mathbb{F}_q[x]$. Please prove that f divides $x^{q^n} x$ if and only if the degree of f divides n.
 - (c) Please prove that $x^{47^n} x 1$ is *not* irreducible in $\mathbb{F}_{47}[x]$ for $n \ge 2$.
- 6. Suppose $p \ge 3$ is prime.
 - (a) Please prove that $F(x) := x^p$ defines an automorphism of \mathbb{F}_{p^2} fixing \mathbb{F}_p .
 - (b) Please prove that the polynomial $x^p + x 2$ has exactly p roots in \mathbb{F}_{p^2} .
- 7. Suppose M is a faithful R-module with the property that, if $m_1, m_2 \in M$, then either $Rm_1 = Rm_2$ or $Rm_1 \cap Rm_2 = \{0\}$. Please prove that either (i) M is irreducible or (ii) R is a field.
- 8. Please find an explicit univariate polynomial in $\mathbb{Z}[x]$ with Galois group $\mathbb{Z}/210\mathbb{Z}$ over \mathbb{Q} , and prove why your polynomial satisfies this property.