Texas A\&M University Algebra Qualifying Exam Friday, August 14, 2015

Instructions: There are 8 problems, some of which have multiple parts. Please attempt them all.
Also: - Please start each problem on a new page, clearly writing the problem number and your name on that page.

- Electronic or written assistance of any kind (such as calculators, cell phones, computers, notes, or books) is forbidden.
- Please do not interpret any problem in a way that renders it trivial.
- Unless otherwise specified, we assume rings to be commutative, with multiplicative identity. For any ring R we let R^{*} denote the group of units of R, we let $R^{n \times n}$ denote the set of $n \times n$ matrices with entries in R, and we let \mathbb{F}_{q} denote the (finite) field with q elements. Also, we assume all R-modules are unital left R-modules. Finally, for any subset $S \subseteq R$ we use $\langle S\rangle$ to denote the ideal generated by S.

1. Please prove that, up to isomorphism, there are at most 4 groups of order 306 containing an element of order 9.
2. Suppose $A \in \mathbb{Z}^{n \times n}$ has (i, j)-entry $a_{i, j}$ for all i, j, and $x=\left(x_{1}, \ldots, x_{n}\right)$. Let us then define x^{A} to be the vector of (formal) monomials $\left(x_{1}^{a_{1,1}} \cdots x_{n}^{a_{n, 1}}, \ldots, x_{1}^{a_{1, n}} \cdots x_{n}^{a_{n, n}}\right)$. One can prove (and you may assume) that $x^{A B}=\left(x^{A}\right)^{B}$ for any $B \in \mathbb{Z}^{n \times n}$.
(a) Please prove that when $\operatorname{det}(A) \in\{-1,1\}$, and K is a field, the function $m_{A}(x):=x^{A}$ defines an automorphism of $\left(K^{*}\right)^{n}$.
(b) For arbitrary $A \in \mathbb{Z}^{n \times n}$ the function $m_{A}(x):=x^{A}$ happens to define an endomorphism of the subgroup $\{-1,1\}^{n}$ of $\left(\mathbb{Q}^{*}\right)^{n}$. Please find, and prove, an explicit formula for the cardinality of the quotient group $\{-1,1\}^{n} / \operatorname{Ker}\left(m_{A}\right)$ as a function of the $(\mathbb{Z} / 2 \mathbb{Z})$-rank of the $\bmod 2$ reduction of A.
3. Let K be a field.
(a) Please prove that, given any non-zero vector $v \in K^{n}, v$ can be completed to a basis, i.e., we can find $v_{2}, \ldots, v_{n} \in K^{n}$ with $\left\{v, v_{2}, \ldots, v_{n}\right\}$ a basis for K^{n}.
(b) Under the additional assumption that K is algebraically closed, please prove that, given any $A \in K^{n \times n}$, there are matrices $U, V \in K^{n \times n}$, with V invertible and U upper-triangular, such that $A=V^{-1} U V$.
4. Given any ring R, and R-modules $A, A^{\prime}, B, B^{\prime}, C, C^{\prime}$, and R-module homomorphisms $f, f^{\prime}, g, g^{\prime}, \alpha, \beta, \gamma$ such that α and γ are monomorphisms and the diagram

commutes and (1) has exact top and bottom rows, please prove that β is a monomorphism.
5. Suppose $p, q \in \mathbb{N}, p$ is prime, q is a prime power, and \mathbb{F}_{q} is a field with exactly q elements. Also let $\phi^{(k)}$ denote the k-fold composition of an endomorphism ϕ with itself.
(a) Please prove that if $x^{p^{n}}-x-1$ is irreducible in $\mathbb{F}_{p}[x]$ then (i) $\phi(y):=y^{p^{n}}$ defines an automorphism of $\mathbb{F}_{p}[x] /\left\langle x^{p^{n}}-x-1\right\rangle$, and (ii) $\phi^{(p)}$ is the identity map on $\mathbb{F}_{p}[x] /\left\langle x^{p^{n}}-x-1\right\rangle$.
(b) Suppose f is irreducible in $\mathbb{F}_{q}[x]$. Please prove that f divides $x^{q^{n}}-x$ if and only if the degree of f divides n.
(c) Please prove that $x^{47^{n}}-x-1$ is not irreducible in $\mathbb{F}_{47}[x]$ for $n \geq 2$.
6. Suppose $p \geq 3$ is prime.
(a) Please prove that $F(x):=x^{p}$ defines an automorphism of $\mathbb{F}_{p^{2}}$ fixing \mathbb{F}_{p}.
(b) Please prove that the polynomial $x^{p}+x-2$ has exactly p roots in $\mathbb{F}_{p^{2}}$.
7. Suppose M is a faithful R-module with the property that, if $m_{1}, m_{2} \in M$, then either $R m_{1}=R m_{2}$ or $R m_{1} \cap R m_{2}=\{0\}$. Please prove that either (i) M is irreducible or (ii) R is a field.
8. Please find an explicit univariate polynomial in $\mathbb{Z}[x]$ with Galois group $\mathbb{Z} / 210 \mathbb{Z}$ over \mathbb{Q}, and prove why your polynomial satisfies this property.
