Algebra Qualifying Examination Problems August 2018

Instructions:

- Read all 9 problems first; make sure that you understand them and feel free to ask clarifying questions. Do not interpret a problem in a way that makes it trivial.
- Credit is awarded based both on the correctness of your answers as well as the clarity and main steps of your reasoning. Answers must be written in a structured and understandable manner and be legible. Do 'scratch work' on a separate page.
- Start each problem on a new page, clearly marking the problem number and your name on that page.
- Rings always have an identity and all R-modules are left modules.

1. Let G be a finite group. Prove that the number of ordered pairs $(g, h) \in G^{2}$ such that g and h commute is equal to $k|G|$, where k is the number of conjugacy classes in G.
2. Here S_{n} and A_{n} are the symmetric and the alternating groups on n objects. You may use the fact that A_{n} is simple for $n \geq 5$ and that if H is a simple subgroup of S_{n} of order more than 2, then $H \subseteq A_{n}$.
(a) Show that every homomorphism $A_{6} \longrightarrow S_{4}$ is trivial
(b) Show that A_{6} has no subgroups of index 4.
(c) Let G be a group of order 90 with no normal subgroups of order 5 . Show that there is a non-trivial homomorphism $G \longrightarrow S_{6}$. (Hint: consider the Sylow 5-subgroups.)
(d) Show that there are no simple groups of order 90 .
3. Let $R=\mathbb{C}[x, y] /\left(x^{3}, y^{3}\right)$.
(a) Find all prime ideals of R.
(b) Show that R has a unique maximal ideal.
(c) Find all units of R.
4. Show that the ideal $I=\left(3, x^{6}+1\right)$ is not a prime ideal of $\mathbb{Z}[x]$. Find prime ideals $A \neq 0$ and B such that $A \subset I \subset B \subset \mathbb{Z}[x]$.
5. Let R be a domain and F be its field of fractions. Prove that F is an injective R-module.
6. (a) Prove that every element of $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ can be written in the form $x \otimes 1$ for $x \in \mathbb{Q}$. (b) Prove that the $\operatorname{map} \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \longrightarrow \mathbb{Q}$ generated by $a \otimes b \mapsto a b$ is an isomorphism of additive groups.
7. Let A, B, C be R-modules, where R is commutative with 1 . Suppose that there is an exact sequence

$$
0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0
$$

(a) Show that if A and C are free R-modules, then B is a free R-module. (b) Prove that if an ideal I of R is a free R-module, then I is principal. (c) Suppose that R is not a PID. Show that there is an exact sequence as in part (a) where B is free but neither A nor C is free.
8. Let K be a field of characteristic 0 such that every odd degree polynomial $f(x) \in K[x]$ has a root in K. Let L / K be a finite extension. Show that $[L: K]$ is a power of 2 .
9. Find the Galois group of the splitting field of $x^{4}-3$ over $\mathbb{Q}[\sqrt{-1}]$.

