Algebra Qualifying Examination
 August 6, 2019

Instructions:

- Read all problems first; make sure that you understand them and feel free to ask clarifying questions. Do not interpret a problem in a way that makes it trivial.
- Credit awarded will be based on the correctness of your answers as well as the clarity and main steps of your reasoning. Answers must be written in a structured and understandable manner and be legible. Do scratch work on a separate page.
- Start each problem on a new page, clearly marking the problem number on that page.
- Rings always have an identity and all modules are left modules.
- Throughout, \mathbb{Z} denotes the integers, \mathbb{Q} denotes the rational numbers, \mathbb{R} denotes the real numbers, and \mathbb{C} denotes the complex numbers.

1. Let G be a group of order 91 . Prove that G is abelian. (Note that $91=$ $7 \cdot 13$.)
2. Let G be a group and let $Z(G)$ be the center of G. Let $n=[G: Z(G)]$.
(a) Prove that every conjugacy class of G has at most n elements.
(b) Suppose $n>1$. Is there an example of a group G with $[G: Z(G)]=n$ and an element $g \in G$ such that the conjugacy class of g has exactly n elements? Justify your answer.
3. Let R be a ring. Let N be the subset of R consisting of all nilpotent elements. (An element $r \in R$ is nilpotent if $r^{n}=0$ for some positive integer n.)
(a) Prove that if R is commutative, then N is an ideal.
(b) If R is not commutative, must N be an ideal? Prove or give a counterexample.
4. Let R be a finite ring. Prove that if R has no zero divisors, then R is a division ring (that is, each nonzero element of R is invertible).
5. For the following questions, A is a 3×3 matrix with entries in \mathbb{C} and I is the 3×3 identity matrix.
(a) List all possible 3×3 matrices A in Jordan canonical form having 5 as the only eigenvalue.
(b) Which of the matrices A from part (a) satisfy $\operatorname{dim}(\operatorname{ker}(A-5 I))=2$?
(c) Let $V=\mathbb{C}^{3}$ and let A be any of the matrices from part (a). Consider V to be a $\mathbb{C}[x]$-module via $p(x) \cdot v=p(A) v$ for all $v \in V, p(x) \in \mathbb{C}[x]$. For which of the matrices A from part (a) is V a cyclic $\mathbb{C}[x]$-module?
6. Let R be a ring, and let M be an R-module. Prove that the following conditions are equivalent:
(i) Every R-submodule N of M is finitely generated.
(ii) M satisfies the ascending chain condition, that is for every sequence of R-submodules

$$
M_{1} \subseteq M_{2} \subseteq M_{3} \subseteq \cdots
$$

of M, there is a positive integer t such that $M_{s}=M_{t}$ for all $s \geq t$.
7. (a) Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} G=0$ for all finite abelian groups G.
(b) Find $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$. Justify your answer.
8. Let $f(x)=x^{4}-4$ in $\mathbb{Q}[x]$.
(a) Find the splitting field K of f over \mathbb{Q}.
(b) Find the Galois group $\operatorname{Gal}(K / \mathbb{Q})$.
9. Let K be a field extension of F such that $K=F(\alpha, \beta)$ for elements α, β of K. Suppose $[F(\alpha): F]=m$ and $[F(\beta): F]=n$ for some positive integers m, n.
(a) Prove that if m, n are relatively prime, then $[K: F]=m n$.
(b) Does the conclusion of (a) necessarily hold in the absence of the relatively prime hypothesis? Prove or give a counterexample.

