Algebra Qualifying Examination 7 January 2014

Instructions:

- There are eight questions worth a total of 100 points. Individual point values are indicated with each problem number.
- Read all problems first; make sure that you understand them and feel free to ask clarifying questions. Do not interpret a problem in a way that makes it trivial.
- Credit is awarded based both on the correctness of your answers as well as the clarity and main steps of your reasoning. Answers must be written in a structured and understandable manner and be legible. Do 'scratch work' on a separate page.
- Start each problem on a new page, clearly marking the problem number and your name on that page.
- Rings always have an identity (otherwise they are rng) and all R-modules are left modules.

1. [12] A subgroup H of a group G is characteristic if $\varphi(H)=H$ for any automorphism φ of G. Show that a characteristic subgroup is normal. Suppose that $G=H K$, where H and K are characteristic subgroups of G with $H \cap K=\{e\}$. Show that $\operatorname{Aut}(G) \simeq \operatorname{Aut}(H) \times \operatorname{Aut}(K)$. (Here, $\operatorname{Aut}(L)$ is the group of automorphisms of L.)
2. [12] Show that any group of order $2014=2 \cdot 19 \cdot 53$ has a normal cyclic subgroup of index 2. Use this to classify all groups of order 2014.
3. [10] Prove that a finite integral domain is a field. Prove that every prime ideal in a finite commutative ring is maximal.
4. [14] Let R be a commutative ring. Observe that for any two R-modules M, N, the collection $\operatorname{Hom}(M, N)$ of R-module homomorphisms $\varphi: M \rightarrow N$ is naturally an R-module. Suppose that

$$
0 \longrightarrow L \xrightarrow{e} M \xrightarrow{f} N \xrightarrow{g} P \longrightarrow 0
$$

is an exact sequence of R-modules (so that g is a surjection whose kernel is equal to the image $f(M)$ of M under f, and e is an injection whose image is the kernel of f). Let A be an R-module. Prove that the induced sequence

$$
0 \longrightarrow \operatorname{Hom}(A, L) \xrightarrow{e_{*}} \operatorname{Hom}(A, M) \xrightarrow{f_{*}} \operatorname{Hom}(A, N)
$$

is exact in that e_{*} is injective and its image is the kernel of the map f_{*}. Also prove that the induced sequence

$$
\operatorname{Hom}(M, A) \stackrel{f^{*}}{\leftarrow} \operatorname{Hom}(N, A) \stackrel{g^{*}}{\longleftarrow} \operatorname{Hom}(P, A) \longleftarrow 0
$$

is exact in that g^{*} is injective and its image is the kernel of the map f^{*}.
5. [10] Let M be an invertible $n \times n$ matrix with real number entries and positive determinant. Show that M can be written as $R K$ where R is in $S O(n)(R$ is orthogonal with determinant 1) and K is an upper triangular matrix with positive entries on the diagonal. Hint: Orthogonal matrices have orthonormal column vectors.
6. [16] Consider a finite field \mathbb{F} with $q=p^{n}$ elements, where p is a prime number and n is a positive integer.
(a) Explain why every element of \mathbb{F} is a root of the polynomial $x^{p^{n}}-x$.
(b) Show that if r divides $p^{n}-1$ then all the roots of the polynomial $x^{r}-1$ of lie in \mathbb{F}.
(c) Show that the polynomial $x^{4}+1$ is reducible over any finite field. (Hint: It is enough to show it over the prime fields with p elements. Consider the cases $p=2$ and p odd separately and observe that for p odd, $p^{2}-1$ is congruent to $0 \bmod 8$, and $x^{8}-1=\left(x^{4}-1\right)\left(x^{4}+1\right)$.)
7. [14] Let $f(x)=x^{4}-4 x^{2}+2 \in \mathbb{Q}[x]$, let \mathbb{E} be its splitting field contained in \mathbb{C}, and let G be the Galois group of \mathbb{E} over \mathbb{Q}. Without simply citing a theorem about Galois groups of quartic polynomials, prove that G is isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$. Find a generator for G and determine how it acts on the roots of $f(x)$. It may help to first identify an intermediate subfield \mathbb{F}, where $\mathbb{Q} \subsetneq \mathbb{F} \subsetneq \mathbb{E}$.
8. [12] Let p and q be prime numbers.
(a) Define a surjective map $\phi: \mathbb{Q}(\sqrt{p}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{q}) \rightarrow \mathbb{Q}(\sqrt{p}, \sqrt{q})$ that is both \mathbb{Q}-linear and a ring homomorphism.
(b) If p and q are distinct, show that ϕ is an isomorphism.
(c) If $p=q$, what is a \mathbb{Q}-basis for the kernel of ϕ ?

