TEXAS A\&M UNIVERSITY
 ALGEBRA QUALIFYING EXAM
 JANUARY 2015

INSTRUCTIONS:

- There are 8 problems. Work on all of them.
- Prove your assertions.
- Use a separate sheet of paper for each problem and write only on one side of the paper.
- Write your name on the top right corner of each page.

Problem 1.

(a) Let G be a group and A and B abelian subgroups of G. Prove that $A \cap B$ is a normal subgroup of $\langle A \cup B\rangle$.
(b) Let G be a finite group which is not cyclic of prime order and in which every proper subgroup is abelian. Prove that G contains a nontrivial, proper, normal subgroup.

Problem 2.

Let G be a group of order 45 . Prove that G is abelian.

Problem 3.

Let R be an integral domain which is noetherian (every ideal is finitely generated). Prove that, if every pair of nonzero elements $a, b \in R$ has a common divisor that can be written as an R-linear combination $x a+y b$ of a and b, for some $x, y \in R$, then R is a principal ideal domain.

Problem 4.

Prove that the polynomial $x^{4}+x^{2}+x+1$ is irreducible over \mathbb{Q}.

Problem 5.

Consider the polynomial $f=x^{5}-6 x+3$ over \mathbb{Q} and its splitting field F.
(a) Prove that f is irreducible over \mathbb{Q}.
(b) Prove that the Galois group G of the extension F over \mathbb{Q} is a subgroup of S_{5}.
(c) Prove that G contains a 5 -cycle.
(d) Prove that G contains a transposition.
(e) Determine G.

Hint 1: If you do not know how to do some part of the problem, skip it and assume it in the next part of the problem.

Hint 2: In part (d) take for granted that f has exactly 3 real roots.

Problem 6.

Prove that $\mathbb{Q}(\sqrt[4]{2})$ is not the splitting field of any polynomial over \mathbb{Q}.

Problem 7.

Let A, B and C be left modules over the commutative ring R (with identity) and let

$$
0 \longrightarrow A \xrightarrow{i} B \xrightarrow{p} C \longrightarrow 0
$$

be a short exact sequence (in other words i is injective R-module homomorphism, p is surjective R-module homomorphism, and $\operatorname{Ker}(p)=\operatorname{Im}(i))$. Prove that there exists an R-module homomorphism $j: C \rightarrow B$ such that $p j=1_{C}$ if and only if there exists an R-module homomorphism $q: B \rightarrow A$ such that $q i=1_{A}$.

Problem 8.

Let R be a commutative ring with identity, I a prime ideal of R, and S the complement of I in R. Prove that the quotient ring $S^{-1} R$ is local.

