Algebra Qualifying Examination January 14, 2016

Instructions: • There are nine problems worth a total of 100 points. Individual point values are listed by each problem.

• Credit awarded for your answers will be based upon the correctness of your answers as well as the clarity and main steps of your reasoning. Answers must be written in a structured and understandable manner.

Notation: Throughout, \mathbb{Z} denotes the integers, \mathbb{Q} denotes the rational numbers, \mathbb{R} denotes the real numbers, and \mathbb{C} denotes the complex numbers.

- 1. (12) Prove that every group of order 255 is cyclic.
- 2. (12) If H is a finite normal subgroup of a group G, then the index of its centralizer $C_G(H)$ is finite.
- 3.(12)
 - (a) Show that any subgroup of finite index in a finitely generated group is itself finitely generated.
 - (b) A group is said to be locally finite if every finitely generated subgroup of the group is finite. Suppose that G is a group containing a normal subgroup K such that K and G/K are both locally finite. Show that G is locally finite.
- 4. (12)
 - (a) Let A be an $n \times n$ matrix over \mathbb{C} . Prove that if $Tr(A^i) = 0$ for all i > 0 then A is nilpotent.
 - (b) Let A and B be $n \times n$ matrices over \mathbb{C} . Prove that if A commutes with AB BA then (AB BA) is nilpotent.
- 5. (8)
 - (a) Is $\mathbb{Z}[x]$ a UFD? Is it a PID? Is it a Euclidean domain?
 - (b) The same questions for the ring $\mathbb{Z}[x, y]$. Justify your answers.

- 6. (10) Let A be a finitely generated abelian group.
 - (a) If A is finite, prove that $A \otimes_{\mathbb{Z}} \mathbb{Q} = 0$.
 - (b) If A is infinite, prove that, for some positive integer $r, A \otimes \mathbb{Q}$ and \mathbb{Q}^r are isomorphic as \mathbb{Z} -modules.
- 7. (10) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ denote the linear map defined by T(x, y) = (x y, y x)for all $x, y \in \mathbb{R}$. Consider \mathbb{R}^2 to be an $\mathbb{R}[x]$ -module by letting $p(x) \cdot v = p(T)(v)$ for all $p(x) \in \mathbb{R}[x], v \in \mathbb{R}^2$.
 - (a) Is \mathbb{R}^2 a cyclic $\mathbb{R}[x]$ -module? (That is, is \mathbb{R}^2 generated by a single element as an $\mathbb{R}[x]$ -module?)
 - (b) Find all the $\mathbb{R}[x]$ -submodules of \mathbb{R}^2 .
- 8. (12) Let $\alpha = \sqrt{2} + \sqrt{2}$ in \mathbb{R} .
 - (a) Find the minimal polynomial f of α over \mathbb{Q} .
 - (b) What is $[\mathbb{Q}(\alpha) : \mathbb{Q}]$?
 - (c) Show that $\mathbb{Q}(\alpha)$ is the splitting field of f over \mathbb{Q} .
 - (d) Show that $\operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ is isomorphic to $\mathbb{Z}/4\mathbb{Z}$.
- 9. (12) Let $f(x) \in \mathbb{Q}[x]$, and let G be the Galois group of f.
 - (a) Suppose f(x) is a polynomial of degree 2. Find all possible Galois groups G and state conditions on the coefficients of f under which each such group occurs.
 - (b) Suppose f(x) is a polynomial of degree 3. Prove that if G is a cyclic group of order 3, then f(x) splits completely over \mathbb{R} .