Algebra Qualifying Examination
 January 14, 2016

Instructions: - There are nine problems worth a total of 100 points. Individual point values are listed by each problem.

- Credit awarded for your answers will be based upon the correctness of your answers as well as the clarity and main steps of your reasoning. Answers must be written in a structured and understandable manner.

Notation: Throughout, \mathbb{Z} denotes the integers, \mathbb{Q} denotes the rational numbers, \mathbb{R} denotes the real numbers, and \mathbb{C} denotes the complex numbers.

1. (12) Prove that every group of order 255 is cyclic.
2. (12) If H is a finite normal subgroup of a group G, then the index of its centralizer $C_{G}(H)$ is finite.
3. (12)
(a) Show that any subgroup of finite index in a finitely generated group is itself finitely generated.
(b) A group is said to be locally finite if every finitely generated subgroup of the group is finite. Suppose that G is a group containing a normal subgroup K such that K and G / K are both locally finite. Show that G is locally finite.
4. (12)
(a) Let A be an $n \times n$ matrix over \mathbb{C}. Prove that if $\operatorname{Tr}\left(A^{i}\right)=0$ for all $i>0$ then A is nilpotent.
(b) Let A and B be $n \times n$ matrices over \mathbb{C}. Prove that if A commutes with $A B-B A$ then $(A B-B A)$ is nilpotent.
5. (8)
(a) Is $\mathbb{Z}[x]$ a UFD? Is it a PID? Is it a Euclidean domain?
(b) The same questions for the ring $\mathbb{Z}[x, y]$. Justify your answers.
6. (10) Let A be a finitely generated abelian group.
(a) If A is finite, prove that $A \otimes_{\mathbb{Z}} \mathbb{Q}=0$.
(b) If A is infinite, prove that, for some positive integer $r, A \otimes \mathbb{Q}$ and \mathbb{Q}^{r} are isomorphic as \mathbb{Z}-modules.
7. (10) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the linear map defined by $T(x, y)=(x-y, y-x)$ for all $x, y \in \mathbb{R}$. Consider \mathbb{R}^{2} to be an $\mathbb{R}[x]$-module by letting $p(x) \cdot v=p(T)(v)$ for all $p(x) \in \mathbb{R}[x], v \in \mathbb{R}^{2}$.
(a) Is \mathbb{R}^{2} a cyclic $\mathbb{R}[x]$-module? (That is, is \mathbb{R}^{2} generated by a single element as an $\mathbb{R}[x]$-module?)
(b) Find all the $\mathbb{R}[x]$-submodules of \mathbb{R}^{2}.
8. (12) Let $\alpha=\sqrt{2+\sqrt{2}}$ in \mathbb{R}.
(a) Find the minimal polynomial f of α over \mathbb{Q}.
(b) What is $[\mathbb{Q}(\alpha): \mathbb{Q}]$?
(c) Show that $\mathbb{Q}(\alpha)$ is the splitting field of f over \mathbb{Q}.
(d) Show that $\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})$ is isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$.
9. (12) Let $f(x) \in \mathbb{Q}[x]$, and let G be the Galois group of f.
(a) Suppose $f(x)$ is a polynomial of degree 2. Find all possible Galois groups G and state conditions on the coefficients of f under which each such group occurs.
(b) Suppose $f(x)$ is a polynomial of degree 3. Prove that if G is a cyclic group of order 3 , then $f(x)$ splits completely over \mathbb{R}.
