Texas A\&M University Algebra Qualifying Exam Wednesday, January 11, 2017

Instructions: There are 9 problems, please attempt them all.

- Please start each problem on a new page, clearly writing the problem number on that page.
- Write your name on each page that you hand in.
- You must justify your answers fully. Merely stating a correct answer is not sufficient, nor is it enough to say that the problem is a known result of Abstract Algebra. When you do use a standard result, you must indicate which one.
- Unless otherwise specified, we assume rings to be commutative, with multiplicative identity. Also, we assume all modules are unital left modules. By \mathbb{N}, we mean the nonnegative rational integers.

1. Prove that the quotient of S_{4} by the Klein's group $\{e,(12)(34),(13)(24),(14)(23)\}$ is isomorphic to S_{3}.
2. How many Sylow 2 -subgroups and Sylow 5 -subgroups there are in a noncommutative group of order 20 ?
3. Consider the group $T=\{z \in \mathbb{C}:|z|=1\}$ with respect to multiplication. Prove that every finite subgroup of T is cyclic.
4. Prove that every two-sided ideal of the $\operatorname{ring} M_{n}(\mathbb{Z})$ of $n \times n$ matrices is of the form $M_{n}(k \mathbb{Z})$ for some $k \in \mathbb{N}$.
5. Are the quotient rings $\mathbb{Z}[x] /\left(x^{2}-2\right)$ and $\mathbb{Z}[x] /\left(x^{2}-3\right)$ isomorphic?
6. Let R be a ring, and let M be a Noetherian left R-module. Suppose $\phi: M \rightarrow M$ is a surjective R-module homomorphism. Show that ϕ is an isomorphism. (Hint: Consider iterations $\phi, \phi^{2}=\phi \circ \phi, \phi^{3}=\phi \circ \phi \circ \phi$, etc..)
7. Let R be an integral domain. Show that R is a field if and only if every R-module is projective. (Hint: for one direction, find an ideal I of R that is not prime and then consider R / I as an R-module.)
8. Let \mathbb{k} be a field, $a \in \mathbb{k}$, and let p be a prime number. Prove that the polynomial $x^{p}+a$ is either irreducible or has a root in \mathbb{k}.
9. Let $g=\left(x^{2}-2\right)\left(x^{2}+3\right) \in \mathbb{Q}[x]$. Let E be the splitting field of g over \mathbb{Q}.
(a) What is $[E: \mathbb{Q}]$?
(b) Construct the Galois group $G=\operatorname{Gal}(E / \mathbb{Q})$.
(c) Show explicitly the correspondence between the intermediate fields $\mathbb{Q} \subseteq F \subseteq E$ and the subgroups $H \leq G$.
