Algebra Qualifying Examination 8 January 2018

Instructions:

- There are nine questions worth a total of 100 points. Individual point values are indicated with each problem number.
- Read all problems first; make sure that you understand them and feel free to ask clarifying questions. Do not interpret a problem in a way that makes it trivial. (E.g. #6.)
- Credit is awarded based both on the correctness of your answers as well as the clarity and main steps of your reasoning. Answers must be written in a structured and understandable manner and be legible. State clearly any major theorems you use (hypotheses and conclusions). Justify your reasoning.
- Start each problem on a new page, clearly marking the problem number and your name on that page. Do 'scratch work' on a separate page.
- Rings always have an identity (otherwise they are rng) and all *R*-modules are left modules.

(1) [10] Consider an attempt to define an \mathbb{R} -linear map

 $f: \ \mathbb{C} \otimes_{\mathbb{C}} \mathbb{C} \ \longrightarrow \ \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \qquad \text{or} \qquad \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \ \longrightarrow \ \mathbb{C} \otimes_{\mathbb{C}} \mathbb{C},$

in either direction given by the formula

$$f(x \otimes y) = x \otimes y.$$

In which direction is this map well-defined? Is it then surjective? Is it injective?

(2) [10] Let R be an integral domain with field of fractions K, and let \overline{K} be an algebraic closure of K. Fix $\alpha \in \overline{K}$. Suppose that $M \subseteq \overline{K}$ is a finitely generated R-submodule such that

$$\alpha M \subseteq M.$$

Prove that there is a monic polynomial $f \in R[x]$ such that $f(\alpha) = 0$. (Hint: If M is generated over R by m_1, \ldots, m_n , then consider the characteristic polynomial of an $n \times n$ matrix over R that relates the two vectors

$$\begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \alpha m_1 \\ \vdots \\ \alpha m_n \end{pmatrix}$$

in \overline{K}^n .)

(3) [10] Prove: If a group G contains a proper subgroup of finite index, then it contains a proper normal subgroup of finite index.

- (4) [10] How many elements of order 7 are there in a simple group of order 168?
- (5) [10] Determine all homomorphisms from \mathbb{Q} to \mathbb{Z} , and all homomorphisms from \mathbb{Z} to \mathbb{Q} .
- (6) [12] Give the definition for an element of a commutative ring R to be prime and the definition for an element of a commutative ring R to be irreducible. Prove that in a principal ideal domain every irreducible element is prime.
- (7) [10] Let R be a commutative ring, and let M be a noetherian R-module. Set $I := \{r \in R \mid \forall m \in M, rm = 0\}$

so that I is the annihilator of M. Prove that R/I is a noetherian ring.

- (8) [10] Is it possible to have a field extension $F \subset K$ with degree 2, [K: F] = 2, where both fields are isomorphic to the field $\mathbb{Q}(x)$ of rational functions in one variable? Either exhibit such an extension or prove that it is impossible.
- (9) [18] Let $f(x) = x^5 2 \in \mathbb{Q}[x]$.
 - (a) Let *E* be the splitting field of *f* over \mathbb{Q} . Show that *E* contains both $\mathbb{Q}(\sqrt[5]{2})$ and $\mathbb{Q}(\zeta)$, where $\zeta = e^{2\pi i/5}$. What is $[E : \mathbb{Q}]$?
 - (b) Prove that there exist $\sigma, \tau \in \operatorname{Gal}(E/\mathbb{Q})$ such that
 - (i) $\sigma(\sqrt[5]{2}) = \zeta \sqrt[5]{2}$ and $\sigma(\zeta) = \zeta$.
 - (ii) $\tau(\sqrt[5]{2}) = \sqrt[5]{2}$ and $\tau(\zeta) = \zeta^2$.

Use this to show that every element in $\operatorname{Gal}(E/\mathbb{Q})$ can be expressed uniquely as $\sigma^i \tau^j$ for $0 \leq i \leq 4$ and $0 \leq j \leq 3$. Hint: Note that every automorphism is determined by its action on $\sqrt[5]{2}$ and ζ . Show that these automorphisms act differently on these elements of E.

(c) Let $H \subseteq \text{Gal}(E/\mathbb{Q})$ be the subgroup generated by $\tau\sigma$. What is the fixed field of H?