Algebra Qualifying Exam January 2019

Instructions:

- Read all 9 problems first; make sure that you understand them and feel free to ask clarifying questions. Do not interpret a problem in a way that makes it trivial.
- Credit is awarded based both on the correctness of your answers as well as the clarity and main steps of your reasoning. Answers must be written in a structured and understandable manner and be legible. Do scratch work on a separate page.
- Start each problem on a new page, clearly marking the problem number and your name on that page.
- Rings always have an identity and all *R*-modules are left modules.
- (1) Let T be a linear operator on a nonzero finite dimensional vector space V over a field F. Assume that the only T-invariant subspaces of V are the zero subspace and V itself. Prove that the characteristic polynomial of T is irreducible over F. (By definition, a subspace W of V is called T-invariant if $T(W) \subseteq W$.)
- (2) Let G be a finite group acting on a finite set X. Assume that each point in X is fixed by at least one nonidentity element of G, and that each nonidentity element of G fixes at most two points of X. Prove that the action has at most three orbits.
- (3) Let n be a positive integer and let G = D_{2ⁿ⁺¹} := ⟨r,s | r^{2ⁿ} = s² = 1, sr = r⁻¹s⟩.
 (a) Find the ascending central series (C_n(G))_{n>0} of G. Explain your answer.
 - (Recall that, by definition, $C_0(G)$ is the trivial group and $C_{n+1}(G)$ is the inverse image of the center of $G/C_n(G)$ under the quotient map $G \to G/C_n(G)$.)
 - (b) Is G nilpotent? Justify your answer.
 - (c) Is G solvable? Justify your answer.
- (4) Let R be a commutative ring with $1 \neq 0$, and let S be a nonempty subset of R such that $0 \notin S$ and $ab \in S$ whenever $a, b \in S$.
 - (a) Prove that there exists an ideal J of R that is maximal with respect to having empty intersection with S.
 - (b) Prove that J is a prime ideal.
- (5) Let R be a commutative ring with $1 \neq 0$, let M be an R-module, and let I be an ideal of R. Prove that $(R/I) \otimes_R M$ and M/IM are isomorphic as R-modules. (IM denotes the R-submodule of M consisting of all finite sums of elements of the form im where $i \in I$ and $m \in M$.)

- (6) Let R be a commutative ring with $1 \neq 0$.
 - (a) Suppose that we have the following commutative diagram of *R*-modules:

Assume that the top row is exact, and that f' is injective. Prove that the sequence

$$\ker(\alpha) \xrightarrow{f|_{\ker(\alpha)}} \ker(\beta) \xrightarrow{g|_{\ker(\beta)}} \ker(\gamma)$$

is exact.

(b) Suppose that we have the following commutative diagram of *R*-modules:

$$A_{1} \longrightarrow A_{2} \longrightarrow A_{3} \longrightarrow A_{4} \longrightarrow A_{5}$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}} \qquad \downarrow^{\alpha_{3}} \qquad \downarrow^{\alpha_{4}} \qquad \downarrow^{\alpha_{5}}$$

$$B_{1} \longrightarrow B_{2} \longrightarrow B_{3} \longrightarrow B_{4} \longrightarrow B_{5}$$

Assume that both rows are exact. Which of the following statements are true, and which ones are false? (You do not need to justify your response.)

- (i) If α_1 is surjective, and both α_2 and α_4 are injective, then α_3 is injective.
- (ii) If α_1 is surjective, and both α_2 and α_4 are injective, then α_3 is surjective.
- (iii) If α_5 is injective, and both α_2 and α_4 are surjective, then α_3 is injective.
- (iv) If α_5 is injective, and both α_2 and α_4 are surjective, then α_3 is surjective.
- (7) Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree 3, and G its Galois group. Prove that if G is the cyclic group of order 3, then f(x) splits completely over \mathbb{R} .
- (8) Let p be a prime number and let F_p denote the finite field of order p. Let $f(x) \in F_p[x]$ be the polynomial $f(x) \coloneqq x^p x + 1$, and let K be the splitting field of f(x) over F_p . Let $\alpha \in K$ be any root of f.
 - (a) Let $\beta \in K$ be another root of f. Prove that $\alpha \beta \in F_p$.
 - (b) Prove that $K = F_p(\alpha)$.
- (9) Let \mathbb{Q} denote the algebraic closure of \mathbb{Q} in \mathbb{C} . Let P denote the set of all odd prime numbers, and for $p \in P$ let r_p denote p-th root of 7 in \mathbb{R} . Given a subset A of P, show that there exists an automorphism σ of $\overline{\mathbb{Q}}$ such that $\sigma(r_p) = r_p$ for all $p \in A$, and $\sigma(r_p) \neq r_p$ for all $p \in P - A$.