Algebra Qualifying Exam

January 2019

Instructions:

- Read all 9 problems first; make sure that you understand them and feel free to ask clarifying questions. Do not interpret a problem in a way that makes it trivial.
- Credit is awarded based both on the correctness of your answers as well as the clarity and main steps of your reasoning. Answers must be written in a structured and understandable manner and be legible. Do scratch work on a separate page.
- Start each problem on a new page, clearly marking the problem number and your name on that page.
- Rings always have an identity and all R-modules are left modules.
(1) Let T be a linear operator on a nonzero finite dimensional vector space V over a field F. Assume that the only T-invariant subspaces of V are the zero subspace and V itself. Prove that the characteristic polynomial of T is irreducible over F.
(By definition, a subspace W of V is called T-invariant if $T(W) \subseteq W$.)
(2) Let G be a finite group acting on a finite set X. Assume that each point in X is fixed by at least one nonidentity element of G, and that each nonidentity element of G fixes at most two points of X. Prove that the action has at most three orbits.
(3) Let n be a positive integer and let $G=D_{2^{n+1}}:=\langle r, s| r^{2^{n}}=s^{2}=1$, sr $\left.=r^{-1} s\right\rangle$.
(a) Find the ascending central series $\left(C_{n}(G)\right)_{n \geq 0}$ of G. Explain your answer. (Recall that, by definition, $C_{0}(G)$ is the trivial group and $C_{n+1}(G)$ is the inverse image of the center of $G / C_{n}(G)$ under the quotient map $G \rightarrow G / C_{n}(G)$.)
(b) Is G nilpotent? Justify your answer.
(c) Is G solvable? Justify your answer.
(4) Let R be a commutative ring with $1 \neq 0$, and let S be a nonempty subset of R such that $0 \notin S$ and $a b \in S$ whenever $a, b \in S$.
(a) Prove that there exists an ideal J of R that is maximal with respect to having empty intersection with S.
(b) Prove that J is a prime ideal.
(5) Let R be a commutative ring with $1 \neq 0$, let M be an R-module, and let I be an ideal of R. Prove that $(R / I) \otimes_{R} M$ and $M / I M$ are isomorphic as R-modules.
($I M$ denotes the R-submodule of M consisting of all finite sums of elements of the form $i m$ where $i \in I$ and $m \in M$.)
(6) Let R be a commutative ring with $1 \neq 0$.
(a) Suppose that we have the following commutative diagram of R-modules:

Assume that the top row is exact, and that f^{\prime} is injective. Prove that the sequence

$$
\operatorname{ker}(\alpha) \xrightarrow{\left.f\right|_{\operatorname{ker}(\alpha)}} \operatorname{ker}(\beta) \xrightarrow{g_{\operatorname{ker}(\beta)}} \operatorname{ker}(\gamma)
$$

is exact.
(b) Suppose that we have the following commutative diagram of R-modules:

Assume that both rows are exact. Which of the following statements are true, and which ones are false? (You do not need to justify your response.)
(i) If α_{1} is surjective, and both α_{2} and α_{4} are injective, then α_{3} is injective.
(ii) If α_{1} is surjective, and both α_{2} and α_{4} are injective, then α_{3} is surjective.
(iii) If α_{5} is injective, and both α_{2} and α_{4} are surjective, then α_{3} is injective.
(iv) If α_{5} is injective, and both α_{2} and α_{4} are surjective, then α_{3} is surjective.
(7) Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree 3, and G its Galois group. Prove that if G is the cyclic group of order 3 , then $f(x)$ splits completely over \mathbb{R}.
(8) Let p be a prime number and let F_{p} denote the finite field of order p. Let $f(x) \in F_{p}[x]$ be the polynomial $f(x):=x^{p}-x+1$, and let K be the splitting field of $f(x)$ over F_{p}. Let $\alpha \in K$ be any root of f.
(a) Let $\beta \in K$ be another root of f. Prove that $\alpha-\beta \in F_{p}$.
(b) Prove that $K=F_{p}(\alpha)$.
(9) Let $\overline{\mathbb{Q}}$ denote the algebraic closure of \mathbb{Q} in \mathbb{C}. Let P denote the set of all odd prime numbers, and for $p \in P$ let r_{p} denote p-th root of 7 in \mathbb{R}. Given a subset A of P, show that there exists an automorphism σ of $\overline{\mathbb{Q}}$ such that $\sigma\left(r_{p}\right)=r_{p}$ for all $p \in A$, and $\sigma\left(r_{p}\right) \neq r_{p}$ for all $p \in P-A$.

