1. Let H be a subgroup of a group G. Consider the normalizer and centralizer (respectively) of H:

$$N_G(H) := \{g \in G \mid gHg^{-1} = H\} \quad \text{and} \quad C_G(H) := \{g \in G \mid gh = hg \text{ for all } h \in H\}.$$

(a) (5 points) Prove that both the normalizer and centralizer are subgroups of G.
(b) (5 points) Prove that the centralizer is a normal subgroup of the normalizer.
(c) (5 points) Prove that $N_G(H)/C_G(H)$ is isomorphic to a subgroup of $\text{Aut}(H)$ (the group of automorphisms of H, that is, bijective group homomorphisms from H to itself).
(d) (5 points) Assume additionally that H is a normal subgroup of G, and that H is finite. Prove that the index of $C_G(H)$ in G is finite.

2. (10 points) Recall that by definition, a commutative ring R is local if R has a unique maximal ideal. Prove that a commutative ring R is local if and only if for all $r, r' \in R$, if $r + r' = 1_R$ then r or r' is a unit.

3. (10 points) Let $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ be an exact sequence of R-modules. Let id_A, id_C denote the identity maps on A, C, respectively. Consider the following statements:

(i) There is an R-module homomorphism $\phi : C \to B$ such that $\beta \circ \phi = \text{id}_C$.
(ii) There is an R-module homomorphism $\psi : B \to A$ such that $\psi \circ \alpha = \text{id}_A$.
Prove that (i) implies (ii). (Note it is also true that (ii) implies (i).)
4. Let R be a commutative ring and let M be an R-module. Let $T(M)$ be the set of torsion elements of M, that is, $T(M) = \{ m \in M \mid r \cdot m = 0 \text{ for some nonzero } r \in R \}$.

(a) (5 points) Prove that if R is an integral domain, then $T(M)$ is an R-submodule of M.

(b) (5 points) Give an example of a ring R and an R-module M for which $T(M)$ is not an R-submodule of M.

(c) (5 points) Let M, N be R-modules, and let $f : M \to N$ be an R-module homomorphism. Prove that $f(T(M)) \subseteq T(N)$.

5. (10 points) Let R be a commutative ring and let I, J be ideals of R. Prove that there is an R-module isomorphism $(R/I) \otimes_R (R/J) \cong R/(I + J)$.

6. The goal of this problem is to prove that \mathbb{C} is an algebraically closed field. (So, do NOT use this fact in your solution!)

 (a) (5 points) Let K/\mathbb{R} be a finite extension. Prove that if $[K : \mathbb{R}]$ is odd, then $K = \mathbb{R}$.

 (b) (5 points) Let L/\mathbb{R} be a finite Galois extension of \mathbb{R}. Prove that $[L : \mathbb{R}]$ is a power of 2. (Hint: Sylow’s Theorem)

 (c) (5 points) Prove that there is no extension K/\mathbb{C} with $[K : \mathbb{C}] = 2$.

 (d) (5 points) Let K/\mathbb{C} be any finite extension. Show that there is some finite Galois extension L/\mathbb{R} with $\mathbb{R} \subseteq \mathbb{C} \subseteq K \subseteq L$. Show that $L = \mathbb{C}$, and deduce that $K = \mathbb{C}$.

7. Let F be a finite field, let f be a monic irreducible polynomial in $F[x]$, and let $\alpha \in F$ be a root of f. Prove the following:

 (a) (5 points) $F(\alpha)$ is the splitting field for f over F, and

 (b) (5 points) the set of roots of f is $\{ \alpha^{F|r} \mid r \geq 1 \}$.

8. (10 points) Is the symmetric group S_4 the internal direct sum of two or more nontrivial subgroups? Prove your answer.