Applied/Numerical Analysis Qualifying Exam

August 13, 2010

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem so that it becomes trivial.

Part 1: Applied Analysis

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

1. Let \mathcal{H} be a complex (separable) Hilbert space, with $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ being the inner product and norm.
(a) Define the term compact linear operator on \mathcal{H}.
(b) Let $K: \mathcal{H} \rightarrow \mathcal{H}$ be compact. Show: If $\lambda \neq 0$ is an eigenvalue of K, then it has finite multiplicity.
2. Let $\langle f, g\rangle=\int_{-1}^{1} f(x) \overline{g(x)} w(x) d x$, where $w \in C[-1,1], w(x)>0$, and $w(-x)=w(x)$. Let $\left\{\phi_{n}(x)\right\}_{n=0}^{\infty}$ be the orthogonal polynomials generated by using the Gram-Schmidt process on $\left\{1, x, x^{2} \ldots\right\}$. Assume that $\phi_{n}(x)=x^{n}+$ lower powers.
(a) Show that $\phi_{n}(-x)=(-1)^{n} \phi_{n}(x)$.
(b) Show that ϕ_{n} is orthogonal to all polynomials of degree $\leq n-1$.
(c) Show that $\phi_{n}(x)$ satisfies this recurrence relation:

$$
\phi_{n+1}(x)=x \phi_{n}(x)-c_{n} \phi_{n-1}(x), n \geq 1, \text { where } c_{n}=\frac{\left\langle\phi_{n}, x^{n}\right\rangle}{\left\|\phi_{n-1}\right\|^{2}}
$$

3. Define $D[\phi]=\int_{0}^{1}\left(\phi^{\prime 2}+q \phi^{2}\right) d x$ and $H[\phi]=\int_{0}^{1} \phi^{2} d x$. Throughout, we require that $\phi \in C^{(1)}[0,1]$ and that $\phi(0)=0$.
(a) Let $\sigma \geq 0$. Minimize $D[\phi]+\sigma \phi^{2}(1)$ subject to the constraint $H[\phi]=1$. Find the resulting Sturm-Liouville eigenvalue problem, including boundary conditions at $x=1$.
(b) State the Courant Minimax Principle. Consider Dirichlet boundary conditons $\phi(0)=0, \phi(1)=0$. Order the first and second second eigenvalues for the two problems; that is if a, b, c, d are the four eigenvalues, then determine their aorder, $a \leq b \leq c \leq d$. Justify your answer.
4. Let \mathcal{S} be Schwartz space and \mathcal{S}^{\prime} be the space of tempered distributions. The Fourier transform convention used here is $\hat{f}(\omega)=\int_{\mathbb{R}} f(t) e^{i \omega t} d t$.
(a) Define convergence in \mathcal{S}. Sketch a proof: The Fourier transform \mathcal{F} is a continuous linear operator mapping \mathcal{S} into itself. Briefly explain how to use this to define the Fourier transform of a tempered distribution. This fails for \mathcal{D}^{\prime}. Why?
(b) You are given that if $T \in \mathcal{S}^{\prime}$, then $\widehat{T^{(k)}}=(-i \omega)^{k} \widehat{T}$, where $k=$ $1,2, \ldots$ Let $T(x)=0$ if $x \notin(0,3)$. On [0, 3], let T be the linear spline shown. Find \widehat{T}. (Hint: What is $T^{\prime \prime}$?)

Part 2: Numerical Analysis

Instructions: Do all problems in this part of the exam. Show all of your work clearly.

1. Consider the system

$$
\begin{align*}
-\Delta u-\phi & =f \\
u-\Delta \phi & =g \tag{1}
\end{align*}
$$

in the bounded, smooth domain Ω, with boundary conditions $u=\phi=0$ on $\partial \Omega$.
(a) Derive a weak formulation of the system (1), using suitable test functions for each equation. Define a bilinear form $a((u, \phi),(v, \psi))$ such that this weak formulation amounts to

$$
\begin{equation*}
a((u, \phi),(v, \psi))=(f, v)+(g, \psi) . \tag{2}
\end{equation*}
$$

(b) Choose appropriate function spaces for u and ϕ in (2).
(c) Show, that the weak formulation (2) has a unique solution. Hint: Lax-Milgram.
(d) For a domain $\Omega_{d}=(-d, d)^{2}$, show that

$$
\begin{equation*}
\|u\|^{2} \leq c d^{2}\|\nabla u\|^{2} \tag{3}
\end{equation*}
$$

holds for any function $u \in H_{0}^{1}\left(\Omega_{d}\right)$.
(e) Now change the second "-" in the first equation of (1) to a " + ". Use (3) to show stability for the modified equation on Ω_{d}, provided that d is sufficiently small.
2. Consider the two finite elements $\left(\tau, Q_{1}, \Sigma\right)$ and $\left(\tau, \widetilde{Q}_{1}, \Sigma\right)$, where $\tau=$ $[-1,1]^{2}$ is the reference square and

$$
\begin{aligned}
& Q_{1}=\operatorname{span}\{1, x, y, x y\} \\
& \widetilde{Q}_{1}=\operatorname{span}\left\{1, x, y, x^{2}-y^{2}\right\}
\end{aligned}
$$

$\Sigma=\{w(-1,0), w(1,0), w(0,-1), w(0,1)\}$ is the set of the values of a function $w(x, y)$ at the midpoints of the edges of τ.
(a) Which of the two elements is unisolvent? Prove it!
(b) Show that the unisolvent element leads to a finite element space, which is not H^{1}-conforming.
3. Consider the following initial boundary value problem: find $u(x, t)$ such that

$$
\begin{aligned}
u_{t}-u_{x x}+u & =0, & & 0<x<1, t>0 \\
u_{x}(0, t)=u_{x}(1, t) & =0, & & t>0 \\
u(x, 0) & =g(x), & & 0<x<1 .
\end{aligned}
$$

(a) Derive the semi-discrete approximation of this problem using linear finite elements over a uniform partition of $(0,1)$. Write it as a system of linear ordinary differential equations for the coefficient vector.
(b) Further, derive discretizations in time using backward Euler and Crank-Nicolson methods, respectively.
(c) Show that both fully discrete schemes are unconditionally stable with respect to the initial data in the spatial $L^{2}(0,1)$-norm.

