Applied/Numerical Analysis Qualifying Exam

August 13, 2010

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Part 1: Applied Analysis

Instructions: Do any 3 of the 4 problems in this part of the exam. Show all of your work clearly. Please indicate which of the 4 problems you are skipping.

- 1. Let \mathcal{H} be a complex (separable) Hilbert space, with $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$ being the inner product and norm.
 - (a) Define the term *compact linear operator* on \mathcal{H} .
 - (b) Let $K : \mathcal{H} \to \mathcal{H}$ be compact. Show: If $\lambda \neq 0$ is an eigenvalue of K, then it has finite multiplicity.
- 2. Let $\langle f,g \rangle = \int_{-1}^{1} f(x)\overline{g(x)}w(x)dx$, where $w \in C[-1,1]$, w(x) > 0, and w(-x) = w(x). Let $\{\phi_n(x)\}_{n=0}^{\infty}$ be the orthogonal polynomials generated by using the Gram-Schmidt process on $\{1, x, x^2 \dots\}$. Assume that $\phi_n(x) = x^n$ + lower powers.
 - (a) Show that $\phi_n(-x) = (-1)^n \phi_n(x)$.
 - (b) Show that ϕ_n is orthogonal to all polynomials of degree $\leq n-1$.
 - (c) Show that $\phi_n(x)$ satisfies this recurrence relation:

$$\phi_{n+1}(x) = x\phi_n(x) - c_n\phi_{n-1}(x), \ n \ge 1, \text{ where } c_n = \frac{\langle \phi_n, x^n \rangle}{\|\phi_{n-1}\|^2}.$$

- 3. Define $D[\phi] = \int_0^1 (\phi'^2 + q\phi^2) dx$ and $H[\phi] = \int_0^1 \phi^2 dx$. Throughout, we require that $\phi \in C^{(1)}[0, 1]$ and that $\phi(0) = 0$.
 - (a) Let $\sigma \geq 0$. Minimize $D[\phi] + \sigma \phi^2(1)$ subject to the constraint $H[\phi] = 1$. Find the resulting Sturm-Liouville eigenvalue problem, including boundary conditions at x = 1.

- (b) State the Courant Minimax Principle. Consider Dirichlet boundary conditons $\phi(0) = 0$, $\phi(1) = 0$. Order the first and second second eigenvalues for the two problems; that is if a, b, c, d are the four eigenvalues, then determine their aorder, $a \leq b \leq c \leq d$. Justify your answer.
- 4. Let \mathcal{S} be Schwartz space and \mathcal{S}' be the space of tempered distributions. The Fourier transform convention used here is $\hat{f}(\omega) = \int_{\mathbb{R}} f(t)e^{i\omega t}dt$.
 - (a) Define convergence in \mathcal{S} . Sketch a proof: The Fourier transform \mathcal{F} is a continuous linear operator mapping \mathcal{S} into itself. Briefly explain how to use this to define the Fourier transform of a tempered distribution. This fails for \mathcal{D}' . Why?
 - (b) You are **given** that if $T \in \mathcal{S}'$, then $\widehat{T^{(k)}} = (-i\omega)^k \widehat{T}$, where $k = 1, 2, \ldots$ Let T(x) = 0 if $x \notin (0, 3)$. On [0, 3], let T be the linear spline shown. Find \widehat{T} . (Hint: What is T''?)

Part 2: Numerical Analysis

Instructions: Do all problems in this part of the exam. Show all of your work clearly.

1. Consider the system

$$\begin{aligned} -\Delta u - \phi &= f \\ u &-\Delta \phi = g \end{aligned} \tag{1}$$

in the bounded, smooth domain Ω , with boundary conditions $u = \phi = 0$ on $\partial \Omega$.

(a) Derive a weak formulation of the system (1), using suitable test functions for each equation. Define a bilinear form $a((u, \phi), (v, \psi))$ such that this weak formulation amounts to

$$a((u,\phi),(v,\psi)) = (f,v) + (g,\psi).$$
(2)

- (b) Choose appropriate function spaces for u and ϕ in (2).
- (c) Show, that the weak formulation (2) has a unique solution. Hint: Lax-Milgram.
- (d) For a domain $\Omega_d = (-d, d)^2$, show that

$$\|u\|^{2} \le cd^{2} \|\nabla u\|^{2} \tag{3}$$

holds for any function $u \in H_0^1(\Omega_d)$.

- (e) Now change the second "-" in the first equation of (1) to a "+". Use (3) to show stability for the modified equation on Ω_d , provided that d is sufficiently small.
- 2. Consider the two finite elements (τ, Q_1, Σ) and $(\tau, \tilde{Q}_1, \Sigma)$, where $\tau = [-1, 1]^2$ is the reference square and

$$Q_1 = \operatorname{span}\{1, x, y, xy\},$$

$$\widetilde{Q}_1 = \operatorname{span}\{1, x, y, x^2 - y^2\}$$

 $\Sigma = \{w(-1,0), w(1,0), w(0,-1), w(0,1)\}$ is the set of the values of a function w(x,y) at the midpoints of the edges of τ .

- (a) Which of the two elements is unisolvent? Prove it!
- (b) Show that the unisolvent element leads to a finite element space, which is not H^1 -conforming.
- 3. Consider the following initial boundary value problem: find u(x, t) such that

$$u_t - u_{xx} + u = 0, \qquad 0 < x < 1, \ t > 0$$

$$u_x(0, t) = u_x(1, t) = 0, \qquad t > 0$$

$$u(x, 0) = g(x), \qquad 0 < x < 1.$$

- (a) Derive the semi-discrete approximation of this problem using linear finite elements over a uniform partition of (0, 1). Write it as a system of linear ordinary differential equations for the coefficient vector.
- (b) Further, derive discretizations in time using backward Euler and Crank-Nicolson methods, respectively.
- (c) Show that both fully discrete schemes are unconditionally stable with respect to the initial data in the spatial $L^2(0, 1)$ -norm.