APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER

August 6, 2019

Applied Analysis Part, 2 hours

Name:

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let $f \in C[0,1]$, $\delta > 0$, and $\omega(f,\delta)$ be the modulus of continuity for f.

- (a) Let $\Delta = \{x_0 = 0 < x_1 < \cdots < x_n = 1\}$ be a knot sequence with norm $\|\Delta\| = \max |x_j x_{j+1}|$, $j = 0, \ldots, n-1$. If s_f is the linear spline that interpolates f at the x_j 's, show that $\|f s_f\|_{\infty} \leq \omega(f, \|\Delta\|)$.
- (b) Using part (a) and the fact that the continuous functions are dense in $L^1[0,1]$, prove the Riemann-Lebesgue Lemma: $\lim_{|\lambda|\to\infty} \int_0^1 g(x)e^{i\lambda x}dx = 0$, for all $g \in L^1[0,1]$.

Problem 2. Let \mathcal{D} be the set of compactly supported C^{∞} functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.

- (a) Define convergence in \mathcal{D} and \mathcal{D}' .
- (b) Consider a function $f \in C^{(1)}(\mathbb{R})$ such that both f and f' are in $L^1(\mathbb{R})$, and $\int_{\mathbb{R}} f(x)dx = 1$. Define the sequence of functions $\{T_n(x) := n^2 f'(nx) : n = 1, 2, \ldots\}$. Show that, in the sense of distributions — i.e., in \mathcal{D}' —, T_n converges to δ' .

Problem 3. Let L be a closed, densely defined (possibly unbounded) linear operator on a Hilbert space \mathcal{H} , and let the range of L be dense in \mathcal{H} .

- (a) Show that if there exists C > 0 such that $||Lf|| \ge C||f||$ for all $f \in \mathcal{D}$, then L^{-1} is bounded.
- (b) Use (a) to show that if $L = L^*$, then the spectrum of L is contained in \mathbb{R} .

Problem 4. Consider the boundary problem below::

$$L[u] = \frac{d}{dx} \left(x \frac{du}{dx} \right) = f, \text{ where } \mathcal{D} = \{ u \in L^2[1, e] \colon Lu \in L^2[1, e], u'(1) = 0, u(e) = 0 \}.$$

- (a) Find the Green's function g(x, y) for the problem, given that $1, \log(x)$ solve L[u] = 0.
- (b) Show that $Kf(x) = \int_1^e g(x, y)f(y)dy$ is self adjoint, and briefly explain why it's compact. Show *directly* from the spectral theory for compact operators that the orthonormal set of eigenfunctions for L is complete in $L^2[1, e]$. (Do not solve the eigenvalue problem.)

Applied Analysis/Numerical Analysis Qualifying Exam

August 6, 2019

Numerical Analysis Part, 2 hours

Name_

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do *not* interpret the problem so that it becomes trivial.

<u>Problem 1.</u> Consider the boundary value problem: Find u such that

(1)
$$-\Delta u = f \text{ in } \Omega, \ \nabla u \cdot \mathbf{n} + u = 0 \text{ on } \Gamma,$$

where $\Omega \subset \mathbb{R}^2$ is a polygonal domain, $\Gamma = \partial \Omega$ is the boundary of Ω , **n** is the outward-pointing unit normal on Γ , and $q \in \mathbb{R}$ and $f \in L_2(\Omega)$ are given.

(a) The problem (1) has weak form given by: Find $u \in \mathbb{V}$ such that

(2)
$$a(u,v) = L(v), \ \forall v \in \mathbb{V}.$$

Identify the bilinear form a, the linear form L, and the function space \mathbb{V} .

(b) Show that the problem (2) has a unique solution.

<u>*Hint:*</u> If you have correctly identified \mathbb{V} , then there holds

$$||u||_{L_2(\Omega)} \le C(||\nabla u||_{L_2(\Omega)} + ||u||_{L_2(\Gamma)}), \ u \in \mathbb{V}.$$

You may use this inequality without proof.

(c) Let \mathcal{T}_h be a shape-regular partition of Ω into triangles. Introduce the finite dimensional space \mathbb{V}_h consisting of continuous piecewise linear polynomials over \mathcal{T}_h . Consider the finite element approximation of (2): find

(3)
$$u_h \in \mathbb{V}_h$$
, s.t. $a(u_h, v) = L(v)$ for all $v \in \mathbb{V}_h$.

State and prove the optimal estimate for the error $||u-u_h||_{\mathbb{V}}$ assuming that the solution to (2) belongs to the Sobolev space $H^2(\Omega)$. As part of your proof you should define an appropriate interpolation operator and state, but not prove, optimal error estimates for this operator.

(d) Derive an optimal error bound for $||u - u_h||_{L^2(\Omega)}$ under the assumption of full regularity of the problem (2).

<u>Problem 2.</u> Consider the interval I(0,1) and the set of continuous functions \hat{v} defined on [0,1]. Let $\hat{a}_1 = 0$, $\hat{a}_2 = 1/4$, and $\hat{a}_3 = 1$. Consider also the following set of degrees of freedom:

$$\Sigma = \{ \hat{v}(\hat{a}_1), \ \hat{v}(\hat{a}_3), \ \hat{v}'(\hat{a}_2) \}.$$

(a) Show that triple $(I, \mathbb{P}_2, \Sigma)$ is a finite element.

(b) Write down the basis for the quadratic polynomials \mathbb{P}_2 that is dual to Σ , that is, find $q_i \in \mathbb{P}_2$ (i = 1, 2, 3) such that $\hat{q}_i(\hat{a}_j) = \delta_{ij}$ (i = 1, 2, 3 and j = 1, 3) and $\hat{q}'_i(\hat{a}_2) = \delta_{i2}$ (i = 1, 2, 3). Then write down the finite element interpolant $\hat{\Pi}(\hat{w})$ of a given function $\hat{w} \in C^0[0, 1]$ with respect to the given degrees of freedom.

(c) Consider the interval [a, b], let F map [0, 1] onto [a, b], and let $v \in H^3(a, b)$. Define $\Pi(v)$ by $(\Pi(v)) \circ F = \hat{\Pi}(v \circ F)$. Use the Bramble-Hilbert Lemma and the reference map F in order to estimate the error

$$||v' - \Pi(v)'||_{L_2(a,b)}$$

in terms of h = b - a. Explain how to modify the proof when v is less regular, in particular when $v \in H^2(a, b)$.

<u>Problem 3.</u> Let Ω be a bounded domain and T > 0 be a given final time. For $f \in C^0([0,T]; L_2(\Omega))$ and $u_0 \in H_0^1(\Omega)$ given, we consider the parabolic problem consisting in finding $u : \Omega \times [0,T] \to \mathbb{R}$ such that

$$\begin{cases} \frac{\partial}{\partial t}u(x,t) - \Delta u(x,t) = f(x,t) & \text{for } (x,t) \in \Omega \times (0,T], \\ u(x,t) = 0 & \text{for } (x,t) \in \partial \Omega \times [0,T], \\ u(x,0) = u_0(x) & \text{for } x \in \Omega. \end{cases}$$

We assume that the solution u to the above problem is sufficiently smooth.

Let N be a strictly positive integer and let $\tau := T/N$, $t_n := n\tau$ and $t^{n+\frac{1}{2}} := \frac{1}{2}(t^{n+1} + t^n)$ for n = 0, ..., N. We consider the following semi-discretization in time: Set $U^0 := u_0$ and define $U^n : \Omega \to \mathbb{R}$ recursively by

$$\begin{cases} \frac{1}{\tau}(U^{n+1}(x) - U^n(x)) - \frac{1}{2}\Delta(U^{n+1}(x) + U^n(x)) = f(x, t^{n+\frac{1}{2}}) & \text{for } x \in \Omega, \\ U^{n+1}(x) = 0 & \text{for } x \in \partial\Omega. \end{cases}$$

(1) (Stability) Show that for $n = 0, ..., N, U^n$ satisfies

$$\|U^{n+1}\|_{L_2(\Omega)}^2 \le \|U^0\|_{L_2(\Omega)}^2 + \frac{1}{2}C_p^2\tau \sum_{j=0}^n \|f(t^{j+\frac{1}{2}})\|_{L_2(\Omega)}^2.$$

(2) (Consistency I) Show either (but not both) that

$$\|\frac{1}{\tau}(u(t^{n+1}) - u(t^n)) - \frac{\partial}{\partial t}u(t^{n+\frac{1}{2}})\|_{L_2(\Omega)} \le C\tau^{\frac{3}{2}} \|\frac{\partial^3}{\partial t^3}u\|_{L_2(t^n, t^{n+1}; L_2(\Omega))}$$

or

$$\|\frac{1}{2}\Delta\left(u(t^{n+1})+u(t^{n})\right)-\Delta u(t^{n+\frac{1}{2}})\|_{L_{2}(\Omega)} \leq C\tau^{\frac{3}{2}}\|\frac{\partial^{2}}{\partial t^{2}}\Delta u\|_{L_{2}(t^{n},t^{n+1};L_{2}(\Omega))}.$$

Here C is a constant independent of τ , T and u.

<u>Hint:</u> You can use without proof the following Taylor expansion formula

$$g(b) = g(a) + g'(a)(b-a) + \dots + \frac{1}{n!}g^{(n)}(a)(b-a)^n + \frac{1}{n!}\int_a^b (b-t)^n g^{(n+1)}(t)dt$$

(3) (Consistency II) Deduce from the previous item that for a constant C independent of τ , T and u we have

$$\begin{aligned} \frac{1}{\tau} (u^{n+1}(x) - u^n(x)) &- \frac{1}{2} \Delta (u^{n+1}(x) + u^n(x)) - f(t^{n+\frac{1}{2}}) \|_{L_2(\Omega)} \\ &\leq C \tau^{\frac{3}{2}} \left(\| \frac{\partial^3}{\partial t^3} u \|_{L_2(t^n, t^{n+1}; L_2(\Omega))} + \| \frac{\partial^2}{\partial t^2} \Delta u \|_{L_2(t^n, t^{n+1}; L_2(\Omega))} \right) \end{aligned}$$

(4) From (2) and (4), conclude the following estimate for the error $e^n := u(t^n) - U^n$:

$$\|e^{N}\|_{L_{2}(\Omega)}^{2} \leq C\tau^{4} \left(\|\frac{\partial^{3}}{\partial t^{3}}u\|_{L_{2}(0,T;L_{2}(\Omega))}^{2} + \|\frac{\partial^{2}}{\partial t^{2}}\Delta u\|_{L_{2}(0,T;L_{2}(\Omega))}^{2} \right),$$

where C is a constant independent of τ , T and u.