APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER

August 6, 2019
Applied Analysis Part, 2 hours

Name:

\qquad

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem so that it becomes trivial.
Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let $f \in C[0,1], \delta>0$, and $\omega(f, \delta)$ be the modulus of continuity for f.
(a) Let $\Delta=\left\{x_{0}=0<x_{1}<\cdots<x_{n}=1\right\}$ be a knot sequence with norm $\|\Delta\|=\max \left|x_{j}-x_{j+1}\right|$, $j=0, \ldots, n-1$. If s_{f} is the linear spline that interpolates f at the x_{j} 's, show that $\left\|f-s_{f}\right\|_{\infty} \leq$ $\omega(f,\|\Delta\|)$.
(b) Using part (a) and the fact that the continuous functions are dense in $L^{1}[0,1]$, prove the Riemann-Lebesgue Lemma: $\lim _{|\lambda| \rightarrow \infty} \int_{0}^{1} g(x) e^{i \lambda x} d x=0$, for all $g \in L^{1}[0,1]$.
Problem 2. Let \mathcal{D} be the set of compactly supported C^{∞} functions defined on \mathbb{R} and let \mathcal{D}^{\prime} be the corresponding set of distributions.
(a) Define convergence in \mathcal{D} and \mathcal{D}^{\prime}.
(b) Consider a function $f \in C^{(1)}(\mathbb{R})$ such that both f and f^{\prime} are in $L^{1}(\mathbb{R})$, and $\int_{\mathbb{R}} f(x) d x=1$. Define the sequence of functions $\left\{T_{n}(x):=n^{2} f^{\prime}(n x): n=1,2, \ldots\right\}$. Show that, in the sense of distributions - i.e., in \mathcal{D}^{\prime}-, T_{n} converges to δ^{\prime}.
Problem 3. Let L be a closed, densely defined (possibly unbounded) linear operator on a Hilbert space \mathcal{H}, and let the range of L be dense in \mathcal{H}.
(a) Show that if there exists $C>0$ such that $\|L f\| \geq C\|f\|$ for all $f \in \mathcal{D}$, then L^{-1} is bounded.
(b) Use (a) to show that if $L=L^{*}$, then the spectrum of L is contained in \mathbb{R}.

Problem 4. Consider the boundary problem below::

$$
L[u]=\frac{d}{d x}\left(x \frac{d u}{d x}\right)=f, \text { where } \mathcal{D}=\left\{u \in L^{2}[1, e]: L u \in L^{2}[1, e], u^{\prime}(1)=0, u(e)=0\right\},
$$

(a) Find the Green's function $g(x, y)$ for the problem, given that $1, \log (x)$ solve $L[u]=0$.
(b) Show that $K f(x)=\int_{1}^{e} g(x, y) f(y) d y$ is self adjoint, and briefly explain why it's compact. Show directly from the spectral theory for compact operators that the orthonormal set of eigenfunctions for L is complete in $L^{2}[1, e]$. (Do not solve the eigenvalue problem.)

Applied Analysis/Numerical Analysis Qualifying Exam

August 6, 2019
Numerical Analysis Part, 2 hours
Name

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the problem so that it becomes trivial.

Problem 1. Consider the boundary value problem: Find u such that

$$
\begin{equation*}
-\Delta u=f \text { in } \Omega, \nabla u \cdot \mathbf{n}+u=0 \text { on } \Gamma, \tag{1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{2}$ is a polygonal domain, $\Gamma=\partial \Omega$ is the boundary of Ω, \mathbf{n} is the outward-pointing unit normal on Γ, and $q \in \mathbb{R}$ and $f \in L_{2}(\Omega)$ are given.
(a) The problem (1) has weak form given by: Find $u \in \mathbb{V}$ such that

$$
\begin{equation*}
a(u, v)=L(v), \forall v \in \mathbb{V} \tag{2}
\end{equation*}
$$

Identify the bilinear form a, the linear form L, and the function space \mathbb{V}.
(b) Show that the problem (2) has a unique solution.

Hint: If you have correctly identified \mathbb{V}, then there holds

$$
\|u\|_{L_{2}(\Omega)} \leq C\left(\|\nabla u\|_{L_{2}(\Omega)}+\|u\|_{L_{2}(\Gamma)}\right), u \in \mathbb{V} .
$$

You may use this inequality without proof.
(c) Let \mathcal{T}_{h} be a shape-regular partition of Ω into triangles. Introduce the finite dimensional space \mathbb{V}_{h} consisting of continuous piecewise linear polynomials over \mathcal{T}_{h}. Consider the finite element approximation of (2): find

$$
\begin{equation*}
u_{h} \in \mathbb{V}_{h}, \quad \text { s.t. } \quad a\left(u_{h}, v\right)=L(v) \quad \text { for all } \quad v \in \mathbb{V}_{h} . \tag{3}
\end{equation*}
$$

State and prove the optimal estimate for the error $\left\|u-u_{h}\right\|_{\mathbb{V}}$ assuming that the solution to (2) belongs to the Sobolev space $H^{2}(\Omega)$. As part of your proof you should define an appropriate interpolation operator and state, but not prove, optimal error estimates for this operator.
(d) Derive an optimal error bound for $\left\|u-u_{h}\right\|_{L^{2}(\Omega)}$ under the assumption of full regularity of the problem (2).

Problem 2. Consider the interval $I(0,1)$ and the set of continuous functions \hat{v} defined on $[0,1]$. Let $\hat{a}_{1}=0, \hat{a}_{2}=1 / 4$, and $\hat{a}_{3}=1$. Consider also the following set of degrees of freedom:

$$
\Sigma=\left\{\hat{v}\left(\hat{a}_{1}\right), \hat{v}\left(\hat{a}_{3}\right), \hat{v}^{\prime}\left(\hat{a}_{2}\right)\right\} .
$$

(a) Show that triple $\left(I, \mathbb{P}_{2}, \Sigma\right)$ is a finite element.
(b) Write down the basis for the quadratic polynomials \mathbb{P}_{2} that is dual to Σ, that is, find $q_{i} \in \mathbb{P}_{2}$ $(i=1,2,3)$ such that $\hat{q}_{i}\left(\hat{a}_{j}\right)=\delta_{i j}(i=1,2,3$ and $j=1,3)$ and $\hat{q}_{i}^{\prime}\left(\hat{a}_{2}\right)=\delta_{i 2}(i=1,2,3)$. Then write down the finite element interpolant $\hat{\Pi}(\hat{w})$ of a given function $\hat{w} \in C^{0}[0,1]$ with respect to the given degrees of freedom.
(c) Consider the interval $[a, b]$, let F map $[0,1]$ onto $[a, b]$, and let $v \in H^{3}(a, b)$. Define $\Pi(v)$ by $(\Pi(v)) \circ F=\hat{\Pi}(v \circ F)$. Use the Bramble-Hilbert Lemma and the reference map F in order to estimate the error

$$
\left\|v_{1}^{\prime}-\Pi(v)^{\prime}\right\|_{L_{2}(a, b)}
$$

in terms of $h=b-a$. Explain how to modify the proof when v is less regular, in particular when $v \in H^{2}(a, b)$.

Problem 3. Let Ω be a bounded domain and $T>0$ be a given final time. For $f \in C^{0}\left([0, T] ; L_{2}(\Omega)\right)$ and $u_{0} \in H_{0}^{1}(\Omega)$ given, we consider the parabolic problem consisting in finding $u: \Omega \times[0, T] \rightarrow \mathbb{R}$ such that

$$
\begin{cases}\frac{\partial}{\partial t} u(x, t)-\Delta u(x, t)=f(x, t) & \text { for }(x, t) \in \Omega \times(0, T], \\ u(x, t)=0 & \text { for }(x, t) \in \partial \Omega \times[0, T], \\ u(x, 0)=u_{0}(x) & \text { for } x \in \Omega .\end{cases}
$$

We assume that the solution u to the above problem is sufficiently smooth.
Let N be a strictly positive integer and let $\tau:=T / N, t_{n}:=n \tau$ and $t^{n+\frac{1}{2}}:=\frac{1}{2}\left(t^{n+1}+t^{n}\right)$ for $n=0, \ldots, N$. We consider the following semi-discretization in time: Set $U^{0}:=u_{0}$ and define $U^{n}: \Omega \rightarrow \mathbb{R}$ recursively by

$$
\begin{cases}\frac{1}{\tau}\left(U^{n+1}(x)-U^{n}(x)\right)-\frac{1}{2} \Delta\left(U^{n+1}(x)+U^{n}(x)\right)=f\left(x, t^{n+\frac{1}{2}}\right) & \text { for } x \in \Omega \\ U^{n+1}(x)=0 & \text { for } x \in \partial \Omega\end{cases}
$$

(1) (Stability) Show that for $n=0, \ldots, N, U^{n}$ satisfies

$$
\left\|U^{n+1}\right\|_{L_{2}(\Omega)}^{2} \leq\left\|U^{0}\right\|_{L_{2}(\Omega)}^{2}+\frac{1}{2} C_{p}^{2} \tau \sum_{j=0}^{n}\left\|f\left(t^{j+\frac{1}{2}}\right)\right\|_{L_{2}(\Omega)}^{2}
$$

(2) (Consistency I) Show either (but not both) that

$$
\left\|\frac{1}{\tau}\left(u\left(t^{n+1}\right)-u\left(t^{n}\right)\right)-\frac{\partial}{\partial t} u\left(t^{n+\frac{1}{2}}\right)\right\|_{L_{2}(\Omega)} \leq C \tau^{\frac{3}{2}}\left\|\frac{\partial^{3}}{\partial t^{3}} u\right\|_{L_{2}\left(t^{n}, t^{n+1} ; L_{2}(\Omega)\right)}
$$

or

$$
\left\|\frac{1}{2} \Delta\left(u\left(t^{n+1}\right)+u\left(t^{n}\right)\right)-\Delta u\left(t^{n+\frac{1}{2}}\right)\right\|_{L_{2}(\Omega)} \leq C \tau^{\frac{3}{2}}\left\|\frac{\partial^{2}}{\partial t^{2}} \Delta u\right\|_{L_{2}\left(t^{n}, t^{n+1} ; L_{2}(\Omega)\right)} .
$$

Here C is a constant independent of τ, T and u.
Hint: You can use without proof the following Taylor expansion formula

$$
g(b)=g(a)+g^{\prime}(a)(b-a)+\ldots+\frac{1}{n!} g^{(n)}(a)(b-a)^{n}+\frac{1}{n!} \int_{a}^{b}(b-t)^{n} g^{(n+1)}(t) d t .
$$

(3) (Consistency II) Deduce from the previous item that for a constant C independent of τ, T and u we have

$$
\begin{aligned}
& \left\|\frac{1}{\tau}\left(u^{n+1}(x)-u^{n}(x)\right)-\frac{1}{2} \Delta\left(u^{n+1}(x)+u^{n}(x)\right)-f\left(t^{n+\frac{1}{2}}\right)\right\|_{L_{2}(\Omega)} \\
& \quad \leq C \tau^{\frac{3}{2}}\left(\left\|\frac{\partial^{3}}{\partial t^{3}} u\right\|_{L_{2}\left(t^{n}, t^{n+1} ; L_{2}(\Omega)\right)}+\left\|\frac{\partial^{2}}{\partial t^{2}} \Delta u\right\|_{L_{2}\left(t^{n}, t^{n+1} ; L_{2}(\Omega)\right)}\right) .
\end{aligned}
$$

(4) From (2) and (4), conclude the following estimate for the error $e^{n}:=u\left(t^{n}\right)-U^{n}$:

$$
\left\|e^{N}\right\|_{L_{2}(\Omega)}^{2} \leq C \tau^{4}\left(\left\|\frac{\partial^{3}}{\partial t^{3}} u\right\|_{L_{2}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\left\|\frac{\partial^{2}}{\partial t^{2}} \Delta u\right\|_{L_{2}\left(0, T ; L_{2}(\Omega)\right)}^{2}\right),
$$

where C is a constant independent of τ, T and u.

