APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER

January 12, 2018

Applied Analysis Part, 2 hours

Name:

Instructions: Do problemss 1 and 2 and either 3 or 4. No extra credit for doing 3 and 4.

Problem 1. Let \mathcal{D} be the set of compactly supported functions defined on \mathbb{R} and let \mathcal{D}' be the corresponding set of distributions.

- (a) Define convergence in \mathcal{D} and \mathcal{D}' .
- (b) Show that $\psi \in \mathcal{D}$ satisfies $\psi = \phi''$ for some $\phi \in \mathcal{D}$ if and only if

$$\int_{-\infty}^{\infty} \psi(x) dx = 0 \text{ and } \int_{-\infty}^{\infty} x \psi(x) dx = 0.$$

(c) Find all distributions $T \in \mathcal{D}'$ such that $T''(x) = \delta(x+1) - 2\delta(x) + \delta(x-1)$.

Problem 2. Consider a functional K[u], where $u \in V$, and V is a Banach space.

- a Define the Frechét derivative and the Gâteaux derivative for K[u]. Use a simple twodimensional example to illustrate the difference between the two types of derivatives.
- b Let $p(x) \in C^2[0,1], p(x) \ge c > 0$. Consider the constrained functional,

$$J[u] = \int_0^1 pu'^2 dx + \sigma u(1)^2, \ H[u] = \int_0^1 u^2 dx = 1,$$

where $u \in C^{(1)}[0,1]$, u(0) = 0, and $\sigma > 0$. Calculate the variational derivative of the problem, using Lagrange multipliers. Find the Sturm-Liouville eigenvalue problem associated with it.

c How does the second eigenvalue of this problem compare with the second eigenvalue of the corresponding Dirichlet problem, i.e., u(0) = u(1) = 0? with the Neumann problem u(0) = 0 = u'(1)? Prove your answer.

Problem 3. Consider the operator Lu = -u'' defined on functions in $L^2[0,\infty)$ having u'' in $L^2[0,\infty)$ and satisfying the boundary condition that u(0) = 0; that is, L has the domain

$$D_L = \{ u \in L^2[0,\infty) \mid u'' \in L^2[0,\infty) \text{ and } u(0) = 0 \}.$$

Find the Green's function G satisfying $-G'' - zG = \delta(x - \xi)$, with $G(0,\xi;z) = 0$, where $z \in \mathbb{C} \setminus [0,\infty)$.

Problem 4. Consider the kernel $k(x,y) = \sum_{n=0}^{\infty} (1+n)^{-4} P_{n+1}(x) P_n(y)$, where P_n is the n^{th} Legendre polynomial, normalized so that $\int_{-1}^{1} P_n(x)^2 dx = \frac{2}{2n+1}$.

- (a) Show that $Ku(x) = \int_{-1}^{1} k(x, y)u(y)dy$ is a compact operator on $L^{2}[-1, 1]$.
- (b) Determine the spectrum of K.

APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER

January 12, 2018

Numerical Analysis Part, 2 hours

Name: _

Instructions: Do all problems 1-3 in this part of the exam; problem 4 is a bonus question. Show all of your work clearly.

Problem 1. Let K be a triangle in \mathbb{R}^2 . Denote by |K| the area of K. Let m_1, m_2 , and m_3 be the mid-points of the three edges. Here $H^m(\Omega)$ is the standard Sobolev space of functions defined on Ω that have square integrable weak derivatives of order m and \mathcal{P}_k is the set of polynomials of degree k.

(a) Prove that the following quadrature is exact for every polynomial in \mathcal{P}_2 :

$$\int_{K} p(x)dx = \frac{1}{3}|K|(p(m_1) + p(m_2) + p(m_3)).$$

(b) Let h_K be the diameter of K. Prove that there is c > 0 (depending on the triangle K) s.t.

$$\forall v \in H^{3}(K), \qquad \left| \int_{K} v(x) dx - \frac{1}{3} |K| (v(m_{1}) + v(m_{2}) + v(m_{3})) \right| \le ch_{K}^{3} |K|^{\frac{1}{2}} |v|_{H^{3}(K)}$$

Note: You may use the Bramble-Hilbert Lemma without proof as long as you state it correctly before using it.

Problem 2. Let V be a closed subspace of $H^1(\Omega)$, $V_h \subset V$ be a finite element approximation space and Ω a domain in \mathbb{R}^d . We consider the Crank-Nicolson approximation in time: find $W^j \in V_h$, $j = 0, 1, \ldots$ satisfying

$$\left(\frac{W^{n+1}-W^n}{k},\theta\right) + \frac{1}{2}A(W^{n+1}+W^n,\theta) = (f^{n+\frac{1}{2}},\theta), \qquad \forall \theta \in V_h.$$

Here k > 0 is the time step size, $t_n = nk$, $f^{n+\frac{1}{2}}(\cdot) = f(\cdot, t_n + \frac{k}{2}) \in V_h$, (\cdot, \cdot) is the inner product in $L^2(\Omega)$, and $A(\cdot, \cdot)$ is a symmetric, coercive, and bounded bilinear form on V.

Let $\{\psi_i\}$, i = 1, ..., M be an orthonormal basis with respect to (\cdot, \cdot) for V_h of eigenfunctions satisfying

$$A(\psi_i, \theta) = \lambda_i(\psi_i, \theta), \qquad \forall \theta \in V_h$$

(a) Using the expansion

$$W^n = \sum_{i=1}^M c_i^n \psi_i$$
 & $f^{n+\frac{1}{2}} = \sum_{i=1}^M d_i^n \psi_i$,

derive a recurrence relation for c_i^{n+1} in terms of $\delta_i = (1 - k\lambda_i/2)/(1 + k\lambda_i/2)$, c_i^n , k and d_i^n .

(b) Show that

$$|c_i^n| \le \begin{cases} |c_i^0| & \text{if } f = 0, \\ \lambda_1^{-1/2} \left(k \sum_{j=0}^{n-1} |d_i^j|^2 \right)^{1/2} & \text{if } W^0 = 0. \end{cases}$$

Here λ_1 is the smallest eigenvalue.

(c) Use Part (b) above and superposition principle to derive the stability estimate

$$||W^n|| \le ||W^0|| + \lambda_1^{-1/2} \left(k \sum_{j=0}^{n-1} ||f^j||^2\right)^{1/2}$$

Problem 3. Consider the boundary value problem: find u(x) such that

(3.1)
$$-\Delta u + \alpha \frac{\partial u}{\partial x_1} + \beta x_1 \frac{\partial u}{\partial x_2} = f(x), \quad x := (x_1, x_2) \in \Omega$$
$$u(x) = 0, \qquad x \in \partial \Omega.$$

Here Ω is a bounded convex polygonal domain in \mathbb{R}^2 , α and β are given constants, and f(x) is a given function in $L^2(\Omega)$. These guarantee full regularity of the solution for any α and β , i.e. $u \in H^2(\Omega)$ and $||u||_{H^2} \leq C ||f||_{L^2}$.

- (a) Derive a weak form of this problem in an appropriate space V (identify this space !).
- (b) Show that the corresponding bilinear form is coercive in the norm of the space V.
- (c) Assume that you are given an admissible triangulation of the domain Ω and consider the space V_h of continuous piecewise linear functions with respect to this mesh vanishing on $\partial\Omega$. Assuming standard approximation properties of V_h , write down an *a priori* estimate for the error of the FEM in V-norm.
- (d) Using the Aubin-Nitsche (duality) argument, derive an error estimate in the $L^2(\Omega)$ -norm. Explain what additional regularity conditions are needed for this estimate.

Problem 4. (A bonus problem for extra 10 pts) Let K be a simplex in \mathbb{R}^d , d > 1 and let ρ_K be the diameter of the largest ball inscribed in K. Let ϕ_i , $i = 1, \ldots, d+1$ be the nodal basis of the FE space of linear functions over K determined by their vertex values. Prove that

$$|\nabla \phi_i| \le \rho_K^{-1}$$
 for $i = 1, \dots, d$.