
APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER

January 12, 2018

Applied Analysis Part, 2 hours

Name:

Instructions: Do problemss 1 and 2 and either 3 or 4. No extra credit for doing 3 and 4.

Problem 1. Let D be the set of compactly supported functions defined on R and let D′ be the
corresponding set of distributions.

(a) Define convergence in D and D′.
(b) Show that ψ ∈ D satisfies ψ = φ′′ for some φ ∈ D if and only if∫ ∞

−∞
ψ(x)dx = 0 and

∫ ∞
−∞

xψ(x)dx = 0.

(c) Find all distributions T ∈ D′ such that T”(x) = δ(x+ 1)− 2δ(x) + δ(x− 1).

Problem 2. Consider a functional K[u], where u ∈ V , and V is a Banach space.

a Define the Frechét derivative and the Gâteaux derivative for K[u]. Use a simple two-
dimensional example to illustrate the difference between the two types of derivatives.

b Let p(x) ∈ C2[0, 1], p(x) ≥ c > 0. Consider the constrained functional,

J [u] =

∫ 1

0

pu′ 2dx+ σu(1)2, H[u] =

∫ 1

0

u2dx = 1,

where u ∈ C(1)[0, 1], u(0) = 0, and σ > 0. Calculate the variational derivative of
the problem, using Lagrange multipliers. Find the Sturm-Liouville eigenvalue problem
associated with it.

c How does the second eigenvalue of this problem compare with the second eigenvalue of
the corresponding Dirichlet problem, i.e., u(0) = u(1) = 0? with the Neumann problem
u(0) = 0 = u′(1)? Prove your answer.

Problem 3. Consider the operator Lu = −u′′ defined on functions in L2[0,∞) having u′′ in
L2[0,∞) and satisfying the boundary condition that u(0) = 0; that is, L has the domain

DL = {u ∈ L2[0,∞) |u′′ ∈ L2[0,∞) and u(0) = 0}.
Find the Green’s function G satisfying −G′′ − zG = δ(x − ξ), with G(0, ξ; z) = 0, where
z ∈ C \ [0,∞).

Problem 4. Consider the kernel k(x, y) =
∑∞

n=0(1 + n)−4Pn+1(x)Pn(y), where Pn is the nth

Legendre polynomial, normalized so that
∫ 1

−1 Pn(x)2dx = 2
2n+1

.

(a) Show that Ku(x) =
∫ 1

−1 k(x, y)u(y)dy is a compact operator on L2[−1, 1].
(b) Determine the spectrum of K.
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APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER

January 12, 2018

Numerical Analysis Part, 2 hours

Name:

Instructions: Do all problems 1-3 in this part of the exam; problem 4 is a bonus question.
Show all of your work clearly.

Problem 1. Let K be a triangle in R2. Denote by |K| the area of K. Let m1, m2, and m3 be the
mid-points of the three edges. Here Hm(Ω) is the standard Sobolev space of functions defined
on Ω that have square integrable weak derivatives of order m and Pk is the set of polynomials
of degree k.

(a) Prove that the following quadrature is exact for every polynomial in P2:∫
K

p(x)dx =
1

3
|K|(p(m1) + p(m2) + p(m3)).

(b) Let hK be the diameter of K. Prove that there is c > 0 (depending on the triangle K) s.t.

∀v ∈ H3(K),

∣∣∣∣∫
K

v(x)dx− 1

3
|K|(v(m1) + v(m2) + v(m3))

∣∣∣∣ ≤ ch3K |K|
1
2 |v|H3(K).

Note: You may use the Bramble-Hilbert Lemma without proof as long as you state it correctly
before using it.

Problem 2. Let V be a closed subspace of H1(Ω), Vh ⊂ V be a finite element approximation
space and Ω a domain in Rd. We consider the Crank-Nicolson approximation in time: find
W j ∈ Vh, j = 0, 1, . . . satisfying(W n+1 −W n

k
, θ
)

+
1

2
A(W n+1 +W n, θ) = (fn+ 1

2 , θ), ∀θ ∈ Vh.

Here k > 0 is the time step size, tn = nk, fn+ 1
2 (·) = f(·, tn + k

2
) ∈ Vh, (·, ·) is the inner product

in L2(Ω), and A(·, ·) is a symmetric, coercive, and bounded bilinear form on V .

Let {ψi}, i = 1, . . . ,M be an orthonormal basis with respect to (·, ·) for Vh of eigenfunctions
satisfying

A(ψi, θ) = λi(ψi, θ), ∀θ ∈ Vh.

(a) Using the expansion

W n =
M∑
i=1

cni ψi & fn+ 1
2 =

M∑
i=1

dni ψi,

derive a recurrence relation for cn+1
i in terms of δi = (1− kλi/2)/(1 + kλi/2), cni , k and dni .
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(b) Show that

|cni | ≤


|c0i | if f = 0,

λ
−1/2
1

(
k

n−1∑
j=0

|dji |2
)1/2

if W 0 = 0.

Here λ1 is the smallest eigenvalue.
(c) Use Part (b) above and superposition principle to derive the stability estimate

‖W n‖ ≤ ‖W 0‖+ λ
−1/2
1

(
k

n−1∑
j=0

‖f j‖2
)1/2

.

Problem 3. Consider the boundary value problem: find u(x) such that

(3.1)
−∆u+ α

∂u

∂x1
+ βx1

∂u

∂x2
= f(x), x := (x1, x2) ∈ Ω

u(x) = 0, x ∈ ∂Ω.

Here Ω is a bounded convex polygonal domain in R2, α and β are given constants, and f(x) is
a given function in L2(Ω). These guarantee full regularity of the solution for any α and β, i.e.
u ∈ H2(Ω) and ‖u‖H2 ≤ C‖f‖L2 .

(a) Derive a weak form of this problem in an appropriate space V (identify this space !).
(b) Show that the corresponding bilinear form is coercive in the norm of the space V .
(c) Assume that you are given an admissible triangulation of the domain Ω and consider the

space Vh of continuous piecewise linear functions with respect to this mesh vanishing on ∂Ω.
Assuming standard approximation properties of Vh, write down an a priori estimate for the
error of the FEM in V -norm.

(d) Using the Aubin-Nitsche (duality) argument, derive an error estimate in the L2(Ω)-norm.
Explain what additional regularity conditions are needed for this estimate.

Problem 4. (A bonus problem for extra 10 pts) Let K be a simplex in Rd, d > 1 and let ρK
be the diameter of the largest ball inscribed in K. Let φi, i = 1, . . . , d+ 1 be the nodal basis of
the FE space of linear functions over K determined by their vertex values. Prove that

|∇φi| ≤ ρ−1K for i = 1, . . . , d.
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