
APPLIED ANALYSIS/NUMERICAL ANALYSIS QUALIFIER

January 9, 2020

Applied Analysis Part, 2 hours

Name:

Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible.
Nevertheless, the exam may contain a few misprints. If you are convinced a problem has been stated
incorrectly, indicate your interpretation in writing your answer. In such cases, do not interpret the
problem so that it becomes trivial.

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping.
No extra credit for doing all four.

Problem 1. Consider F (x) := x
2 + 1

x , 1 ≤ x ≤ 2.

(a) State and prove the Contraction Mapping Theorem.
(b) Show that F : [1, 2] → [1, 2], that it is Lipschitz continuous on [1, 2], with Lipschitz constant

less than or equal to 1/2.
(c) Obviously, the fixed point is

√
2. If x0 = 2, estimate the number of iterations needed to come

within 0.001 of
√

2.

Problem 2. Let p ∈ C(2)[0, 1], q ∈ C[0, 1] be positive on [0, 1]. Consider the operator Lu = −(pu′)′+qu,
where DL := {u ∈ L2[0, 1]] : Lu ∈ L2[0, 1]], u(0) = 0 & u′(1) = 0}.

(a) Show that L is self adjoint and positive definite.
(b) Explain why the Green’s function g(x, y) exists for this problem.
(b) Prove that the eigenfunctions of L contain a complete, orthonormal set with respect to L2[0, 1].

Problem 3. Let H be a Hilbert space, C(H) the compact operators H, and B(H) be the bounded
operators on H.

(a) Prove that C(H) is a closed subspace of B(H).
(b) Let H = L2[0, 1]. Use the result above to show that a Hilbert-Schmidt operator Ku(x) =∫ 1

0 k(x, y)u(y)dy, k ∈ L2([0, 1]× [0, 1]) is compact.

Problem 4. Let S be Schwartz space and S ′ be the space of tempered distributions. The Fourier trans-

form convention used here is F [f ](ω) = f̂(ω) :=
∫
R f(t)eiωtdt, F−1[f̂ ](x) = f(x) = 1

2π

∫
R f̂(ω)e−iωtdω.

(a) Sketch a proof: The Fourier transform F is a continuous linear operator mapping S into itself.
(b) Use the previous result to show that1 〈F [T ](x), φ(x)〉 := 〈T (x),F [φ](x)〉 implies F [T ] ∈ S ′.
(c) You are given that if T ∈ S ′, then T̂ (k) = (−iω)kT̂ , where k = 1, 2, . . . . Let T be the tent

function T (x) = 1− |x|, |x| ≤ 1, and T (x) = 0 otherwise. Find T̂ . (Hint: What is T ′′?)

1Here we are defining 〈f, g〉 :=
∫
R f(x)g(x)dx. Note that there is no complex conjugate in this definition of 〈f, g〉.
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Problem 1. Consider the following two finite elements: (τ,Q1,Σ) and (τ, Q̃1,Σ), where

τ = [−1, 1]2

Q1 = span{1, x, y, xy},

Q̃1 = span{1, x, y, x2 − y2}
Σ = {w(−1, 0), w(1, 0), w(0,−1), w(0, 1)}.

Obviously, Σ is the set of the values of a function w(x, y) at the midpoints of the edges of τ .

(a) Show that the finite element (τ,Q1,Σ) is not unisolvent.

(b) Show that the finite element (τ, Q̃1,Σ) is unisolvent.
(c) Show that the finite element spaces are in general not H1-conforming.

Problem 2. Consider the boundary value problem

(2.1)
u(4)(x) + q(x)u = f(x), 0 < x < 1,
u(0) = 0, u(1) = 0,
u′′(0) = −γ, u′(1) + u′′(1) = β,

where f(x) is a given function on (0, 1), β and γ are given constants and q(x) ≥ 0.

(a) Give a weak formulation of this problem in an appropriate space V , characterize V , and
prove that the corresponding bilinear form is coercive on V .

(b) Set up a finite dimensional space Vh ⊂ V of piece-wise cubic functions over a uniform
partition of (0, 1). Introduce the Galerkin finite element method for the problem (2.1) for
Vh. State an error estimate in V -norm assuming that u(x) ∈ H4(0, 1) (do NOT prove this).

(c) Assuming “full regularity” and using duality argument prove the following estimate for
the error of the Galerkin solution uh:

(2.2) ‖u− uh‖L2 ≤ Ch4‖u(4)‖L2 .

Further prove the estimate ‖u′ − u′h‖L2 ≤ Ch3‖u(4)‖L2 .

Problem 3. Let Ω ⊂ R2 be a convex polygonal domain, and let Th be a shape-regular and
quasi-uniform triangulation of Ω with element diameters uniformly equivalent to h. Let also
Vh ⊂ H1

0 (Ω) be a piecewise linear Lagrange finite element space. You may assume the existence
of an interpolation operator Ih : H1

0 (Ω)→ Vh satisfying

‖u− Ihu‖L2(Ω) + h‖u− Ihu‖H1(Ω) ≤ Ch2|u|H2(Ω).

(a) Let u(t) ∈ H1
0 (Ω) (0 ≤ t ≤ T ), u0, and f be sufficiently smooth such that∫
Ω

utv dx+

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx, v ∈ H1
0 (Ω), 0 < t ≤ T,

u(x, 0) = u0(x), x ∈ Ω.

Write down the spatially semidiscrete (i.e., discretized in space but not in time) finite
element formulation of this problem. Denote by uh the solution to these finite element
equations.

(b) For 0 < t ≤ T , let now ũh(t) be the elliptic finite element approximation to u(t). That is∫
Ω

∇ũh(t) · ∇vh dx =

∫
Ω

∇u(t) · ∇vh dx, vh ∈ Vh.
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Prove that∫
Ω

(uh − ũh)tvh dx+

∫
Ω

∇(uh − ũh) · ∇vh dx =

∫
Ω

(u− ũh)tvh dx, vh ∈ Vh, 0 < t ≤ T.

(c) Next recall Gronwall’s Lemma, which states that if σ and ρ are continuous real functions
with σ ≥ 0 and c ≥ 0 is a constant, and if

σ(t) ≤ ρ(t) + c

∫ t

0

σ(s) ds, t ∈ [0, T ],

then
σ(t) ≤ ectρ(t), t ∈ [0, T ].

Using this result, prove that

‖(uh − ũh)(T )‖2L2(Ω) ≤ C(T )

(
‖(uh − ũh)(0)‖2L2(Ω) +

∫ T

0

‖(u− ũh)t(s)‖2L2(Ω) ds

)
.

(d) For the final part you will need the following intermediate result. Given v ∈ H1
0 (Ω)∩H2(Ω),

let vh ∈ Vh satisfy ∫
Ω

∇vh · ∇whdx =

∫
Ω

∇v · ∇whdx, all wh ∈ Vh.

Then
‖v − vh‖L2(Ω) ≤ Ch2|v|H2(Ω).

Assuming this result and additionally that ‖(u−uh)(0)‖L2(Ω) ≤ Ch2|u(0)|H2(Ω), prove that

‖(u− uh)(T )‖L2(Ω) ≤ C(T )h2

|u(0)|H2(Ω) +

(∫ T

0

|ut|2H2(Ω)

)1/2
 .


