Applied Analysis Part
 January 11, 2022

Name:

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let ψ_{j} and $\phi_{j}, j=1, \ldots, n$, be in $L^{2}[0,1]$. Assume the sets $\left\{\psi_{j}\right\}_{j=1}^{n}$ and $\left\{\phi_{j}\right\}_{j=1}^{n}$ are linearly independent. Consider the finite rank kernel $k(x, y)=\sum_{j=1}^{n} \psi_{j}(x) \bar{\phi}_{j}(y)$ and let $K u(x)=\int_{0}^{1} k(x, y) u(y) d y$. You are given that K is compact.
(a) State and prove the Fredholm Alternative.
(b) State the Closed Range Theorem.
(c) Show that the equation $(I-\lambda K) u=f$ has an L^{2}-solution for all $f \in L^{2}[0,1]$ if and only if $1 / \bar{\lambda}$ is not an eigenvalue of the matrix A, where $A_{j k}=\left\langle\phi_{j}, \psi_{k}\right\rangle$.
Problem 2. Let both $K \in \mathcal{C}(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{H})$ be self adjoint.
(a) Show that $\|L\|_{o p}=\sup _{\|u\|=1}|\langle L u, u\rangle|$. (Hint: look at $\langle L(u+v), u+v\rangle-\langle L(u-v), u-v\rangle$, then apply the polarization identity.)
(b) Prove this: Either $\|K\|$ or $-\|K\|$ is an eigenvalue of K.
(c) Let $\mathcal{H}=L^{2}[01]$ and define the operator $M: L^{2}[0,1] \rightarrow L^{2}[0,1]$ by $M u(x)=x u(x)$. Show that $\|M\|_{o p}=1$. Is M compact? Prove your answer.

Problem 3. Suppose that $L u=u^{\prime \prime}+\lambda u$, with $\operatorname{Dom}(L)=\left\{u \in L^{2}(-\infty, \infty): L u \in L^{2}(-\infty, \infty)\right\}$, where $\lambda \in \mathbb{C} \backslash[0, \infty)$. In addition, choose $\operatorname{Im} \sqrt{\lambda}>0$. Show that the Green's function for L is given by

$$
g(x, y, \lambda)=\frac{-i}{2 \sqrt{\lambda}} e^{i \sqrt{\lambda}|x-y|}
$$

Problem 4. Consider the functions ϕ and ψ defined below:

$$
\phi(x)=\left\{\begin{array}{ll}
(|x|-1)^{2}(2|x|+1) & |x| \leq 1 \\
0 & |x|>1
\end{array}, \quad \psi(x)=\left\{\begin{array}{ll}
x(|x|-1)^{2} & |x| \leq 1 \\
0 & |x|>1
\end{array} .\right.\right.
$$

Recall that for $n \geq 2$ and $0 \leq j \leq n$, the functions $\phi_{j}(x):=\phi(n x-j)$ and $\psi_{j}(x):=\frac{1}{n} \psi(n x-j)$ satisfy $\phi_{j}(k / n)=\delta_{j, k}, \phi_{j}^{\prime}(k / n)=0, \psi_{j}(k / n)=0$ and $\psi_{j}^{\prime}(k / n)=\delta_{j, k}$. In addition, the set $\left\{\phi_{j}, \psi_{j}\right\}_{j=0}^{n}$ is a basis for the finite element space $S^{\frac{1}{n}}(3,1)$.
(a) Let $S_{0}^{1 / n}(3,1)=\left\{s \in S^{\frac{1}{n}}(3,1): s(0)=s(1)=0\right\}$. Show that $\langle u, v\rangle=\int_{0}^{1} u^{\prime \prime} v^{\prime \prime} d x$ defines an inner product on $S_{0}^{1 / n}(3,1)$, and that $\left\{\phi_{j}\right\}_{j=1}^{n-1} \cup\left\{\psi_{j}\right\}_{j=0}^{n}$ is a basis for $S_{0}^{1 / n}(3,1)$.
(b) Show that $\left\langle\psi_{j}, \psi_{k}\right\rangle=0$ for all j, k such that $|j-k|>1$.
(c) Show that $\operatorname{argmin}\left\{\|s\|: s \in S_{0}^{\frac{1}{n}}, s(j / n)=f_{j}, j=1, \ldots n-1\right\}$ is given by $s(x)=$ $\sum_{j=1}^{n-1} f_{j} \phi_{j}(x)-\sum_{j=0}^{n} \alpha_{j} \psi_{j}(x)$, where α_{j} 's satisfy a tridiagonal system. Why is this system invertible?

NUMERICAL ANALYSIS QUALIFIER

January 11, 2022

Name:

Problem 1. Let Ω be a polygonal domain in \mathbf{R}^{2} and assume that $0 \in \Omega$. Let $u \in H^{1}(\Omega)$ be the solution of

$$
\begin{equation*}
a(u, \varphi)=l(\varphi), \quad \text { for all } \varphi \in H^{1}(\Omega) \tag{1.1}
\end{equation*}
$$

where the bilinear form $a(.,$.$) and, for a given function f \in L^{2}(\Omega)$, the right hand side $l($.$) are$ defined as follows,

$$
a(v, \varphi):=\int_{\Omega}\left(\nabla v \cdot \nabla \varphi+\|x\|^{2} v \varphi\right) d x, \quad l(\varphi):=\int_{\Omega} f \varphi d x \quad \text { for all } v, \varphi \in H^{1}(\Omega)
$$

Let $\mathcal{T}_{h}, 0<h<1$, be a familiy of shape regular triangulations of Ω. The elements of these partitions will be denoted by T_{h}. Set

$$
V_{h}:=\left\{v_{h} \in H^{1}(\Omega):\left.v_{h}\right|_{T_{h}} \in \mathcal{P}^{1}, \quad T_{h} \in \mathcal{T}_{h}\right\}
$$

where \mathcal{P}^{1} denotes the space of polynomials on \mathbf{R}^{2} of degree at most 1 .
(a) Show that the bilinear form $a(.,$.$) is coercive in H^{1}(\Omega)$.

Hint: Decompose Ω into $\Omega_{i}:=\Omega \cap B_{\varepsilon}(0)$ and $\Omega_{o}:=\Omega \backslash \Omega_{i}$, where $B_{\varepsilon}(0)$ is a disc with radius ε around 0 such that $B_{\varepsilon}(0) \subset \Omega$. You can use without proof that

$$
\|v\|_{L^{2}(\Omega)}^{2} \leq C\left\{\|v\|_{L^{2}\left(\Omega_{o}\right)}^{2}+\|\nabla v\|_{L^{2}(\Omega)^{2}}^{2}\right\}
$$

for all $v \in H^{1}(\Omega)$, for a suitable constant $C \geq 1$ depending on ε but independent of v.
(b) Given that $a(\cdot, \cdot)$ and $l(\cdot)$ are continuous, there exists a unique weak solution $u \in H^{1}(\Omega)$ of (1.1). Derive the strong form of problem (1.1) assuming that the solution u is smooth.

Now, consider the following finite element ansatz: find $u_{h} \in V_{h}$ such that

$$
\begin{equation*}
a\left(u_{h}, \varphi_{h}\right)=l\left(\varphi_{h}\right), \quad \forall \varphi_{h} \in V_{h} \tag{1.2}
\end{equation*}
$$

(c) State and prove Cea's Lemma for the error of the FE solution in the H^{1}-norm.
(d) Assuming that the solution u is in $H^{2}(\Omega)$, derive an estimate for the error $\left\|u-u_{h}\right\|_{H^{1}(\Omega)}$. Your final estimate should reflect the correct order of convergence with respect to the mesh parameter h. You may use without proof suitable approximation results for the finite element space V_{h}.

Problem 2. Consider the unit interval $\Omega=(0,1)$ and the following 1D parabolic problem:

$$
\begin{aligned}
\partial_{t} u(x, t)-\partial_{x x} u(x, t) & =f(t, x), & & \text { for } x \in \Omega, t \in(0, T], \\
u(t, 0)=u(t, 1) & =0 & & \text { for } t \in(0, T] \\
u(0, x) & =u_{0}(x), & & \text { for } x \in \Omega .
\end{aligned}
$$

Here, $f(t, x)$ and $u_{0}(x)$ are given, smooth functions.
(a) Derive the variational (in space) formulation of the above problem. What is a suitable function space V ?
(b) Discretize the variational formulation in time only (Rothe's method) with the backward Euler scheme.
(c) Let now $\left\{\psi_{j}\right\}_{j=1}^{\infty} \subset H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ be an orthonormal (in $L_{2}(\Omega)$) eigenbasis of $-\partial_{x x}$ with homogeneous Dirichlet boundary conditions with corresponding eigenvalues $0<$ $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \ldots$. That is,

$$
-\partial_{x x} \psi_{j}(x)=\lambda_{j} \psi_{j}(x), x \in(0,1), \psi_{j}(0)=\psi_{j}(1)=0,\left\|\psi_{j}\right\|_{L_{2}(0,1)}=1, \int_{0}^{1} \psi_{i} \psi_{j}=\delta_{i j}
$$

Now, write the semi discrete solution defined in part (b) as follows:

$$
u_{k}^{n}=\sum_{j=1}^{\infty} c_{j}^{n} \psi_{j}(x)
$$

where k is the time-step size, t_{n} denotes the time point $t_{n}=k n$. Derive the equation following relation for ${ }_{c}^{n+1} c_{j}^{n}$:

$$
\frac{\begin{array}{l}
\text { for } c_{j}^{n}: \\
c_{j}^{n+1}-c_{j}^{n} \\
k
\end{array} \lambda_{j} c_{j}^{n+1}=F_{j}^{n+1}, j=0,1,2 \ldots}{}
$$

where $F_{j}^{n+1}:=\int_{0}^{1} f\left(t_{n+1}, x\right) \psi_{j}(x) \mathrm{d} x$.
(d) Prove the coefficientwise stability result

$$
\left|c_{j}^{n+1}\right| \leq q_{j}^{n+1}\left|c_{j}^{0}\right|+k \sum_{m=1}^{n+1} q_{j}^{n+2-m}\left|F_{j}^{m}\right|, \quad \text { where } q_{j}:=\frac{1}{1+k \lambda_{j}}
$$

Using that $\left\|u_{k}^{n}\right\|_{L_{2}(0,1)}=\left(\sum_{j=1}^{\infty}\left(c_{j}^{n}\right)^{2}\right)^{1 / 2}$, conclude that if $f=0$, then

$$
\left\|u_{k}^{n}\right\|_{L_{2}(0,1)} \leq\left\|u_{0}\right\|_{L_{2}(0,1)}
$$

Problem 3. Let K be a nondegenerate triangle in \mathbf{R}^{2}. Let a_{1}, a_{2}, a_{3} be the three vertices of K. Let $a_{i j}=a_{j i}$ denote the midpoint of the segment $\left(a_{i}, a_{j}\right), i, j \in\{1,2,3\}$ and $i \neq j$. Let \mathcal{P}^{2} be the set of the polynomial functions over K of total degree at most 2 . Let $\Sigma=$ $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{12}, \sigma_{23}, \sigma_{31}\right\}$ be the functionals (or degrees of freedom) on \mathcal{P}^{2} defined as

$$
\sigma_{i}(p):=p\left(a_{i}\right), i \in\{1,2,3\} \quad \sigma_{i j}(p):=p\left(a_{i}\right)+p\left(a_{j}\right)-2 p\left(a_{i j}\right), i, j=1,2,3, i \neq j
$$

(a) Show that Σ is a unisolvent set for \mathcal{P}^{2} (this means that any $p \in \mathcal{P}^{2}$ is uniquely determined by the values of the above degrees of freedom applied to p).
(b) Compute the "nodal" basis $\left\{\psi_{j}\right\}_{j=1}^{6}$ of \mathcal{P}^{2} which corresponds to $\left\{\sigma_{1}, \ldots, \sigma_{31}\right\}$.

Hint for part (a) and (b): Use barycentric coordinates.
(c) Given $u \in C^{0}(K)$, define an interpolation operator I_{h} by

$$
\left(I_{h} u\right)(x)=\sum_{j=1}^{3} \sigma_{j}(u) \psi_{j}(x)+\sigma_{12}(u) \psi_{4}(x)+\sigma_{23}(u) \psi_{5}(x)+\sigma_{23}(u) \psi_{6}(x)
$$

Show the following:
(i) $I_{h} u=u$ if $u \in \mathcal{P}^{2}$.
(ii) There is a constant C independent of u and K such that

$$
\left\|I_{h} u\right\|_{L_{\infty}(K)} \leq C\|u\|_{L_{\infty}(K)}
$$

(iii) Finally deduce that

$$
\left\|u-I_{h} u\right\|_{L_{\infty}(K)} \leq C \inf _{\chi \in \mathcal{P}^{2}}\|u-\chi\|_{L_{\infty}(K)}
$$

