Applied Analysis Part January 11, 2022

Name:

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let ψ_j and ϕ_j , $j = 1, \ldots, n$, be in $L^2[0, 1]$. Assume the sets $\{\psi_j\}_{j=1}^n$ and $\{\phi_j\}_{j=1}^n$ are linearly independent. Consider the finite rank kernel $k(x,y) = \sum_{j=1}^{n} \psi_j(x) \overline{\phi}_j(y)$ and let $Ku(x) = \int_0^1 k(x, y)u(y)dy$. You are given that K is compact.

- (a) State and prove the Fredholm Alternative.
- (b) State the Closed Range Theorem.
- (c) Show that the equation $(I \lambda K)u = f$ has an L²-solution for all $f \in L^2[0, 1]$ if and only if $1/\overline{\lambda}$ is not an eigenvalue of the matrix A, where $A_{ik} = \langle \phi_i, \psi_k \rangle$.

Problem 2. Let both $K \in \mathcal{C}(\mathcal{H})$ and $L \in \mathcal{B}(\mathcal{H})$ be self adjoint.

- (a) Show that $||L||_{op} = \sup_{||u||=1} |\langle Lu, u \rangle|$. (Hint: look at $\langle L(u+v), u+v \rangle \langle L(u-v), u-v \rangle$, then apply the polarization identity.)
- (b) Prove this: Either ||K|| or -||K|| is an eigenvalue of K.
- (c) Let $\mathcal{H} = L^2[01]$ and define the operator $M: L^2[0,1] \to L^2[0,1]$ by Mu(x) = xu(x). Show that $||M||_{op} = 1$. Is *M* compact? Prove your answer.

Problem 3. Suppose that $Lu = u'' + \lambda u$, with $\text{Dom}(L) = \{u \in L^2(-\infty, \infty) : Lu \in L^2(-\infty, \infty)\},\$ where $\lambda \in \mathbb{C} \setminus [0, \infty)$. In addition, choose $\mathrm{Im}\sqrt{\lambda} > 0$. Show that the Green's function for L is given by

$$g(x, y, \lambda) = \frac{-i}{2\sqrt{\lambda}} e^{i\sqrt{\lambda}|x-y|}$$

Problem 4. Consider the functions ϕ and ψ defined below:

$$\phi(x) = \begin{cases} (|x|-1)^2(2|x|+1) & |x| \le 1\\ 0 & |x| > 1 \end{cases}, \qquad \psi(x) = \begin{cases} x(|x|-1)^2 & |x| \le 1\\ 0 & |x| > 1 \end{cases}.$$

Recall that for $n \ge 2$ and $0 \le j \le n$, the functions $\phi_j(x) := \phi(nx - j)$ and $\psi_j(x) := \frac{1}{n}\psi(nx - j)$ satisfy $\phi_j(k/n) = \delta_{j,k}$, $\phi'_j(k/n) = 0$, $\psi_j(k/n) = 0$ and $\psi'_j(k/n) = \delta_{j,k}$. In addition, the set $\{\phi_i, \psi_i\}_{i=0}^n$ is a basis for the finite element space $S^{\frac{1}{n}}(3, 1)$.

- (a) Let $S_0^{1/n}(3,1) = \{s \in S^{\frac{1}{n}}(3,1) : s(0) = s(1) = 0\}$. Show that $\langle u, v \rangle = \int_0^1 u'' v'' dx$ defines an inner product on $S_0^{1/n}(3,1)$, and that $\{\phi_j\}_{j=1}^{n-1} \cup \{\psi_j\}_{j=0}^n$ is a basis for $S_0^{1/n}(3,1)$. (b) Show that $\langle \psi_j, \psi_k \rangle = 0$ for all j, k such that |j - k| > 1.
- (c) Show that $\operatorname{argmin}\{\|s\| : s \in S_0^{\frac{1}{n}}, s(j/n) = f_j, j = 1, \dots, n-1\}$ is given by $s(x) = \sum_{j=1}^{n-1} f_j \phi_j(x) \sum_{j=0}^n \alpha_j \psi_j(x)$, where α_j 's satisfy a tridiagonal system. Why is this system invertible?

NUMERICAL ANALYSIS QUALIFIER

January 11, 2022

Name: _

Problem 1. Let Ω be a polygonal domain in \mathbb{R}^2 and assume that $0 \in \Omega$. Let $u \in H^1(\Omega)$ be the solution of

(1.1)
$$a(u,\varphi) = l(\varphi), \quad \text{for all } \varphi \in H^1(\Omega),$$

where the bilinear form a(., .) and, for a given function $f \in L^2(\Omega)$, the right hand side l(.) are defined as follows,

$$a(v,\varphi) := \int_{\Omega} (\nabla v \cdot \nabla \varphi + \|x\|^2 v \varphi) dx, \qquad l(\varphi) := \int_{\Omega} f\varphi dx \quad \text{ for all } v,\varphi \in H^1(\Omega).$$

Let \mathfrak{T}_h , 0 < h < 1, be a family of shape regular triangulations of Ω . The elements of these partitions will be denoted by T_h . Set

 $V_h := \{ v_h \in H^1(\Omega) : v_h |_{T_h} \in \mathcal{P}^1, \quad T_h \in \mathcal{T}_h \},$

where \mathcal{P}^1 denotes the space of polynomials on \mathbf{R}^2 of degree at most 1.

(a) Show that the bilinear form a(.,.) is coercive in $H^1(\Omega)$.

Hint: Decompose Ω into $\Omega_i := \Omega \cap B_{\varepsilon}(0)$ and $\Omega_o := \Omega \setminus \Omega_i$, where $B_{\varepsilon}(0)$ is a disc with radius ε around 0 such that $B_{\varepsilon}(0) \subset \Omega$. You can use without proof that

$$\|v\|_{L^{2}(\Omega)}^{2} \leq C\left\{\|v\|_{L^{2}(\Omega_{o})}^{2} + \|\nabla v\|_{L^{2}(\Omega)^{2}}^{2}\right\}$$

for all $v \in H^1(\Omega)$, for a suitable constant $C \ge 1$ depending on ε but independent of v.

(b) Given that $a(\cdot, \cdot)$ and $l(\cdot)$ are continuous, there exists a unique weak solution $u \in H^1(\Omega)$ of (1.1). Derive the strong form of problem (1.1) assuming that the solution u is smooth.

Now, consider the following finite element ansatz: find $u_h \in V_h$ such that

(1.2)
$$a(u_h, \varphi_h) = l(\varphi_h), \quad \forall \varphi_h \in V_h.$$

- (c) State and prove Cea's Lemma for the error of the FE solution in the H^1 -norm.
- (d) Assuming that the solution u is in $H^2(\Omega)$, derive an estimate for the error $||u-u_h||_{H^1(\Omega)}$. Your final estimate should reflect the correct order of convergence with respect to the mesh parameter h. You may use without proof suitable approximation results for the finite element space V_h .

Problem 2. Consider the unit interval $\Omega = (0, 1)$ and the following 1D parabolic problem:

$$\partial_t u(x,t) - \partial_{xx} u(x,t) = f(t,x), \qquad \text{for } x \in \Omega, \ t \in (0,T],$$
$$u(t,0) = u(t,1) = 0 \qquad \text{for } t \in (0,T],$$
$$u(0,x) = u_0(x), \qquad \text{for } x \in \Omega.$$

Here, f(t, x) and $u_0(x)$ are given, smooth functions.

- (a) Derive the variational (in space) formulation of the above problem. What is a suitable function space V?
- (b) Discretize the variational formulation in time only (Rothe's method) with the backward Euler scheme.

(c) Let now $\{\psi_j\}_{j=1}^{\infty} \subset H^2(\Omega) \cap H^1_0(\Omega)$ be an orthonormal (in $L_2(\Omega)$) eigenbasis of $-\partial_{xx}$ with homogeneous Dirichlet boundary conditions with corresponding eigenvalues 0 < 0 $\lambda_1 \leq \lambda_2 \leq \lambda_3 \dots$ That is,

$$-\partial_{xx}\psi_j(x) = \lambda_j\psi_j(x), \ x \in (0,1), \ \psi_j(0) = \psi_j(1) = 0, \ \|\psi_j\|_{L_2(0,1)} = 1, \ \int_0^1 \psi_i\psi_j = \delta_{ij}.$$

Now, write the semi discrete solution defined in part (b) as follows:

$$u_k^n = \sum_{j=1}^\infty c_j^n \, \psi_j(x),$$

where k is the time-step size, t_n denotes the time point $t_n = k n$. Derive the equation following relation for c_j^n :

where
$$F_j^{n+1} := \int_0^1 f(t_{n+1}, x)\psi_j(x)dx.$$

(d) Prove the coefficientwise stability result

 $\mathbf{2}$

$$|c_j^{n+1}| \le q_j^{n+1} |c_j^0| + k \sum_{m=1}^{n+1} q_j^{n+2-m} |F_j^m|, \text{ where } q_j := \frac{1}{1+k\lambda_j}.$$

ing that $||u_k^n||_{L_2(0,1)} = (\sum_{j=1}^{\infty} (c_j^n)^2)^{1/2}$, conclude that if $f = 0$, then

$$\|u_k^n\|_{L_2(0,1)} \le \|u_0\|_{L_2(0,1)}$$

Problem 3. Let K be a nondegenerate triangle in \mathbb{R}^2 . Let a_1, a_2, a_3 be the three vertices of K. Let $a_{ij} = a_{ji}$ denote the midpoint of the segment $(a_i, a_j), i, j \in \{1, 2, 3\}$ and $i \neq j$. Let \mathfrak{P}^2 be the set of the polynomial functions over K of total degree at most 2. Let $\Sigma =$ $\{\sigma_1, \sigma_2, \sigma_3, \sigma_{12}, \sigma_{23}, \sigma_{31}\}$ be the functionals (or degrees of freedom) on \mathcal{P}^2 defined as

$$\sigma_i(p) := p(a_i), \ i \in \{1, 2, 3\} \qquad \sigma_{ij}(p) := p(a_i) + p(a_j) - 2p(a_{ij}), \ i, j = 1, 2, 3, \ i \neq j.$$

- (a) Show that Σ is a unisolvent set for \mathcal{P}^2 (this means that any $p \in \mathcal{P}^2$ is uniquely determined by the values of the above degrees of freedom applied to p). (b) Compute the "nodal" basis $\{\psi_j\}_{j=1}^6$ of \mathcal{P}^2 which corresponds to $\{\sigma_1, \ldots, \sigma_{31}\}$.

Hint for part (a) and (b): Use barycentric coordinates.

(c) Given $u \in C^0(K)$, define an interpolation operator I_h by

$$(I_h u)(x) = \sum_{j=1}^3 \sigma_j(u)\psi_j(x) + \sigma_{12}(u)\psi_4(x) + \sigma_{23}(u)\psi_5(x) + \sigma_{23}(u)\psi_6(x)$$

Show the following:

Us

- (i) $I_h u = u$ if $u \in \mathcal{P}^2$.
- (ii) There is a constant C independent of u and K such that

 $||I_h u||_{L_{\infty}(K)} \le C ||u||_{L_{\infty}(K)}.$

(iii) Finally deduce that

$$||u - I_h u||_{L_{\infty}(K)} \le C \inf_{\chi \in \mathcal{P}^2} ||u - \chi||_{L_{\infty}(K)}$$