Applied Analysis Part January 10, 2023

Name:

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let A be an $n \times n$ self-adjoint matrix, with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

- (a) State and prove the Courant-Fischer min-max theorem.
- (b) Let $B = [b_1 \ b_2 \ b_3]$ be a real $n \times 3$ matrix, with b_1, b_2, b_3 being linearly independent. Assume that ||x|| = 1. If $q(x) = x^T A x$ and $\hat{q}(x) = q(x)|_{B^T x = 0}$, show that

$$\lambda_1 \ge \max_{\|x\|=1} \widehat{q}(x) \ge \lambda_4.$$

Problem 2. Let $Lu = -(x^2u')'$, $1 \le x \le 2$, with the domain of L given by

$$D_L := \{ u \in L^2[1,2] : Lu \in L^2[1,2], u(1) = 0, u'(2) = 0 \}.$$

The homogeneous solutions to Lu = 0 are x^{-1} and 1.

- (a) Find the Green's function g(x, y) for the problem $Lu = f, u \in D_L$.
- (b) Show that $Ku := \int_0^1 g(\cdot, y) u(y) dy$ is a compact, self adjoint operator, and that 0 in not an eigenvalue of K.
- (c) Without actually finding them, show that the eigenfunctions of L contain an orthonormal set that is complete in $L^2[0, 1]$.

Problem 3. Let \mathcal{H} be a Hilbert space and let $\mathcal{C}(\mathcal{H})$ be the set of compact operators on \mathcal{H} .

- (a) State and prove the Fredholm Alternative.
- (b) State the Closed Range Theorem.
- (c) Let $\mathcal{H} = L^2[0,1]$. Define the kernel $k(x,y) := x^3y^2$ and let $Ku(x) = \int_0^1 k(x,y)u(y)dy$. Show that K is in $\mathcal{C}(\mathcal{H})$.
- (d) Let $L = I \lambda K$, $\lambda \in \mathbb{C}$, with K as defined in part (c) above. Find all λ for which Lu = f can be solved for all $f \in L^2[0, 1]$. For these values of λ , find the resolvent $(I \lambda K)^{-1}$.

Problem 4. Sketch a proof of the following: If f is a piecewise C^1 , 2π -periodic function, and if $S_N = \sum_{n=-N}^N c_n e^{inx}$ is the N^{th} partial sum of the Fourier series for f, then, for every $x \in \mathbb{R}$,

$$\lim_{N \to \infty} S_N(x) = \frac{f(x^+) + f(x^-)}{2}.$$

NUMERICAL ANALYSIS QUALIFIER

January, 2023

Problem 1. Let \mathbb{P}_2 be the space of polynomials in two variables spanned by $\{1, x_1, x_2, x_1^2, x_1x_2, x_2^2\}$, let \hat{T} be the reference unit triangle, $\hat{\gamma}$ one side of \hat{T} , and $\hat{\pi}$ the standard Lagrange interpolant in \hat{T} with values in \mathbb{P}_2 .

Recall that there exists a constant C only depending on the geometry of \hat{T} such that

$$\forall v \in H^3(\hat{T}), \inf_{p \in \mathbb{P}_2} \|v + p\|_{H^3(\hat{T})} \le C |v|_{H^3(\hat{T})}.$$

- 1. State a trace theorem relating $L^2(\hat{\gamma})$ and $H^1(\hat{T})$.
- 2. Prove that there exists a constant \hat{C} only depending on the geometry of \hat{T} and $\hat{\gamma}$ such that

$$\forall \hat{u} \in H^3(\hat{T}), \, \|\hat{u} - \hat{\pi}(\hat{u})\|_{L^2(\hat{\gamma})} \le \hat{C} \|\hat{u}\|_{H^3(\hat{T})}.$$

3. Let Ω be a bounded polygon in \mathbb{R}^2 , \mathfrak{T}_h be a triangulation of Ω and

$$X_h = \{ v_h \in \mathcal{C}^0(\overline{\Omega}) ; \forall T \in \mathfrak{T}_h, v_h | T \in \mathbb{P}_2 \}.$$

Let T be a triangle of \mathcal{T}_h with diameter h_T and diameter of inscribed disc ϱ_T , and let γ be one side of T. Let F_T be the affine mapping from \hat{T} onto T and let $\pi_{2,h}$ denote the standard Lagrange interpolant on X_h . Prove that there exists a constant C only depending on the geometry of \hat{T} and $\hat{\gamma}$ such that

$$\forall u \in H^{3}(T), \, \|u - \pi_{2,h}(u)\|_{L^{2}(\gamma)} \leq C\sigma_{T}h_{T}^{2+1/2}|u|_{H^{3}(T)},$$

where $\sigma_T = h_T / \varrho_T$.

Problem 2. For $f \in L^2(0, \ell)$, with $\ell \leq 1$, consider the following weak formulation: Seek $(u, v) \in \mathbb{V} := H_0^1(0, \ell) \times H_0^1(0, \ell)$ satisfying for all $(\phi, \psi) \in \mathbb{V}$

(2.1)
$$a((u,v);(\phi,\psi)) := \int_0^\ell u'\phi' + \int_0^\ell v'\psi' - \int_0^\ell v\phi = \int_0^\ell f\psi =: L(\psi).$$

- 1. What is the corresponding strong form satisfied by u (eliminate v)?
- 2. Show that for all $w \in H_0^1(0, \ell)$

$$\left(\int_0^\ell w^2\right)^{1/2} \le \left(\int_0^\ell |w'|^2\right)^{1/2}.$$

3. Show that $a(\cdot; \cdot)$ coerces the natural norm on \mathbb{V} :

$$|||\phi,\psi||| := \left(\|\phi\|_{H^1(0,\ell)}^2 + \|\psi\|_{H^1(0,\ell)}^2 \right)^{1/2}$$

and explicitly find a coercivity constant.

4. Let \mathbb{V}_h be a finite dimensional subspace of \mathbb{V} . Show that there is a unique $(u_h, v_h) \in \mathbb{V}_h$ satisfying for all $(\phi_h, \psi_h) \in \mathbb{V}_h$

$$a((u_h, v_h); (\phi_h, \psi_h)) = L(\psi_h).$$

5. Prove the estimate

$$|||u - u_h, v - v_h||| \le C_1 \inf_{(\phi_h, \psi_h) \in \mathbb{V}_h} |||u - \phi_h, v - \phi_h|||$$

where C_1 is a constant independent of h (find C_1 explicitly).

6. You may assume that $u, v \in H_0^1(0, \ell) \cap H^2(0, \ell)$. Propose a discrete space \mathbb{V}_h such that $|||u - u_h, v - v_h||| \le C_2 h(||u||_{H^2(0, \ell)} + ||v||_{H^2(0, \ell)})$

for a constant C_2 independent of h. Justify your suggestion (you can assume the standard interpolation estimates hold).

Problem 3. Let b be a strictly positive constant and consider the problem: find u(x,t) such that

$$\begin{split} &\frac{\partial u}{\partial t} + b\frac{\partial u}{\partial x} = 0, \quad 0 < x < 1, \ 0 < t \\ &u(x,0) = u_0(x), \quad 0 < x < 1, \\ &u(0,t) = u(1,t), \ t > 0 \end{split}$$

where u_0 is a smooth periodic function. Let J and N be positive integers, $x_i = ih$ for i = 0, ..., Jwhere h = 1/J and $t_n = n\tau$ for $n \ge 0$ where $\tau = 1/N$. Also denote by u_j^n the approximation of $u(x_j, t_n)$.

Set $u_i^0 = u_0(x_j)$ and define recursively u_j^n by the following Lax scheme

$$u_{j}^{n+1} = \frac{1}{2}(u_{j+1}^{n} + u_{j-1}^{n}) - \frac{\tau b}{2h}(u_{j+1}^{n} - u_{j-1}^{n}), \quad j = 0, ..., J,$$

with the convention that $u_{-1}^n = u_{J-1}^n$ and $u_{J+1}^n = u_1^n$. Show that for all j = 0, ..., J and $n \ge 0$ $\min_i (u_i^0) \le u_j^n \le \max_i (u_i^0)$

provided $\frac{\tau b}{h} \leq 1$.