Applied Analysis Part
 January 10, 2023

Name:

Instructions: Do any three problems. Show all work clearly. State the problem that you are skipping. No extra credit for doing all four.

Problem 1. Let A be an $n \times n$ self-adjoint matrix, with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.
(a) State and prove the Courant-Fischer min-max theorem.
(b) Let $B=\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right]$ be a real $n \times 3$ matrix, with b_{1}, b_{2}, b_{3} being linearly independent. Assume that $\|x\|=1$. If $q(x)=x^{T} A x$ and $\widehat{q}(x)=\left.q(x)\right|_{B^{T} x=0}$, show that

$$
\lambda_{1} \geq \max _{\|x\|=1} \widehat{q}(x) \geq \lambda_{4}
$$

Problem 2. Let $L u=-\left(x^{2} u^{\prime}\right)^{\prime}, 1 \leq x \leq 2$, with the domain of L given by

$$
D_{L}:=\left\{u \in L^{2}[1,2]: L u \in L^{2}[1,2], u(1)=0, u^{\prime}(2)=0\right\} .
$$

The homogeneous solutions to $L u=0$ are x^{-1} and 1 .
(a) Find the Green's function $g(x, y)$ for the problem $L u=f, u \in D_{L}$.
(b) Show that $K u:=\int_{0}^{1} g(\cdot, y) u(y) d y$ is a compact, self adjoint operator, and that 0 in not an eigenvalue of K.
(c) Without actually finding them, show that the eigenfunctions of L contain an orthonormal set that is complete in $L^{2}[0,1]$.

Problem 3. Let \mathcal{H} be a Hilbert space and let $\mathcal{C}(\mathcal{H})$ be the set of compact operators on \mathcal{H}.
(a) State and prove the Fredholm Alternative.
(b) State the Closed Range Theorem.
(c) Let $\mathcal{H}=L^{2}[0,1]$. Define the kernel $k(x, y):=x^{3} y^{2}$ and let $K u(x)=\int_{0}^{1} k(x, y) u(y) d y$. Show that K is in $\mathcal{C}(\mathcal{H})$.
(d) Let $L=I-\lambda K, \lambda \in \mathbb{C}$, with K as defined in part (c) above. Find all λ for which $L u=f$ can be solved for all $f \in L^{2}[0,1]$. For these values of λ, find the resolvent $(I-\lambda K)^{-1}$.

Problem 4. Sketch a proof of the following: If f is a piecewise $C^{1}, 2 \pi$-periodic function, and if $S_{N}=\sum_{n=-N}^{N} c_{n} e^{i n x}$ is the $N^{\text {th }}$ partial sum of the Fourier series for f, then, for every $x \in \mathbb{R}$,

$$
\lim _{N \rightarrow \infty} S_{N}(x)=\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2} .
$$

NUMERICAL ANALYSIS QUALIFIER

January, 2023
Problem 1. Let \mathbb{P}_{2} be the space of polynomials in two variables spanned by $\left\{1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right\}$, let \hat{T} be the reference unit triangle, $\hat{\gamma}$ one side of \hat{T}, and $\hat{\pi}$ the standard Lagrange interpolant in \hat{T} with values in \mathbb{P}_{2}.
Recall that there exists a constant C only depending on the geometry of \hat{T} such that

$$
\forall v \in H^{3}(\hat{T}), \inf _{p \in \mathbb{P}_{2}}\|v+p\|_{H^{3}(\hat{T})} \leq C|v|_{H^{3}(\hat{T})}
$$

1. State a trace theorem relating $L^{2}(\hat{\gamma})$ and $H^{1}(\hat{T})$.
2. Prove that there exists a constant \hat{C} only depending on the geometry of \hat{T} and $\hat{\gamma}$ such that

$$
\forall \hat{u} \in H^{3}(\hat{T}),\|\hat{u}-\hat{\pi}(\hat{u})\|_{L^{2}(\hat{\gamma})} \leq \hat{C}|\hat{u}|_{H^{3}(\hat{T})}
$$

3. Let Ω be a bounded polygon in $\mathbb{R}^{2}, \mathcal{T}_{h}$ be a triangulation of Ω and

$$
X_{h}=\left\{v_{h} \in \mathcal{C}^{0}(\bar{\Omega}) ; \forall T \in \mathcal{T}_{h},\left.v_{h}\right|_{T} \in \mathbb{P}_{2}\right\}
$$

Let T be a triangle of \mathcal{T}_{h} with diameter h_{T} and diameter of inscribed disc ϱ_{T}, and let γ be one side of T. Let F_{T} be the affine mapping from \hat{T} onto T and let $\pi_{2, h}$ denote the standard Lagrange interpolant on X_{h}. Prove that there exists a constant C only depending on the geometry of \hat{T} and $\hat{\gamma}$ such that

$$
\forall u \in H^{3}(T),\left\|u-\pi_{2, h}(u)\right\|_{L^{2}(\gamma)} \leq C \sigma_{T} h_{T}^{2+1 / 2}|u|_{H^{3}(T)}
$$

where $\sigma_{T}=h_{T} / \varrho_{T}$.

Problem 2. For $f \in L^{2}(0, \ell)$, with $\ell \leq 1$, consider the following weak formulation: Seek $(u, v) \in \mathbb{V}:=H_{0}^{1}(0, \ell) \times H_{0}^{1}(0, \ell)$ satisfying for all $(\phi, \psi) \in \mathbb{V}$

$$
\begin{equation*}
a((u, v) ;(\phi, \psi)):=\int_{0}^{\ell} u^{\prime} \phi^{\prime}+\int_{0}^{\ell} v^{\prime} \psi^{\prime}-\int_{0}^{\ell} v \phi=\int_{0}^{\ell} f \psi=: L(\psi) . \tag{2.1}
\end{equation*}
$$

1. What is the corresponding strong form satisfied by u (eliminate v)?
2. Show that for all $w \in H_{0}^{1}(0, \ell)$

$$
\left(\int_{0}^{\ell} w^{2}\right)^{1 / 2} \leq\left(\int_{0}^{\ell}\left|w^{\prime}\right|^{2}\right)^{1 / 2}
$$

3. Show that $a(\cdot ; \cdot)$ coerces the natural norm on \mathbb{V} :

$$
\|\mid \phi, \psi\| \|:=\left(\|\phi\|_{H^{1}(0, \ell)}^{2}+\|\psi\|_{H^{1}(0, \ell)}^{2}\right)^{1 / 2}
$$

and explicitly find a coercivity constant.
4. Let \mathbb{V}_{h} be a finite dimensional subspace of \mathbb{V}. Show that there is a unique $\left(u_{h}, v_{h}\right) \in \mathbb{V}_{h}$ satisfying for all $\left(\phi_{h}, \psi_{h}\right) \in \mathbb{V}_{h}$

$$
a\left(\left(u_{h}, v_{h}\right) ;\left(\phi_{h}, \psi_{h}\right)\right)=L\left(\psi_{h}\right)
$$

5. Prove the estimate

$$
\left\|\left|u-u_{h}, v-v_{h}\| \| \leq C_{1} \inf _{\left(\phi_{h}, \psi_{h}\right) \in \mathbb{V}_{h}}\left\|\left|u-\phi_{h}, v-\phi_{h}\right|\right\|\right.\right.
$$

where C_{1} is a constant independent of h (find C_{1} explicitly).
6. You may assume that $u, v \in H_{0}^{1}(0, \ell) \cap H^{2}(0, \ell)$. Propose a discrete space \mathbb{V}_{h} such that

$$
\left\|\left\|u-u_{h}, v-v_{h}\right\|\right\| \leq C_{2} h\left(\|u\|_{H^{2}(0, \ell)}+\|v\|_{H^{2}(0, \ell)}\right)
$$

for a constant C_{2} independent of h. Justify your suggestion (you can assume the standard interpolation estimates hold).

Problem 3. Let b be a strictly positive constant and consider the problem: find $u(x, t)$ such that

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+b \frac{\partial u}{\partial x}=0, \quad 0<x<1,0<t \\
& u(x, 0)=u_{0}(x), \quad 0<x<1 \\
& u(0, t)=u(1, t), \quad t>0
\end{aligned}
$$

where u_{0} is a smooth periodic function. Let J and N be positive integers, $x_{i}=i h$ for $i=0, \ldots, J$ where $h=1 / J$ and $t_{n}=n \tau$ for $n \geq 0$ where $\tau=1 / N$. Also denote by u_{j}^{n} the approximation of $u\left(x_{j}, t_{n}\right)$.

Set $u_{j}^{0}=u_{0}\left(x_{j}\right)$ and define reccursively u_{j}^{n} by the following Lax scheme

$$
u_{j}^{n+1}=\frac{1}{2}\left(u_{j+1}^{n}+u_{j-1}^{n}\right)-\frac{\tau b}{2 h}\left(u_{j+1}^{n}-u_{j-1}^{n}\right), \quad j=0, \ldots, J,
$$

with the convention that $u_{-1}^{n}=u_{J-1}^{n}$ and $u_{J+1}^{n}=u_{1}^{n}$. Show that for all $j=0, \ldots, J$ and $n \geq 0$

$$
\min _{i}\left(u_{i}^{0}\right) \leq u_{j}^{n} \leq \max _{i}\left(u_{i}^{0}\right)
$$

provided $\frac{\tau b}{h} \leq 1$.

