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Policy on misprints. The qualifying examination committee tries to proofread the ex-
aminations as carefully as possible. Nevertheless, there may be a few misprints. If you
are convinced that a problem has been stated incorrectly, indicate your interpretation in
writing your answer. In such cases, do not interpret the problem so that it becomes trivial.

1. Part I: Applied Analysis

Work 3 out of 4 problems of this part.

Problem 1. Consider the equation Lu = f, λ1(u) = 0, λ2(u) = 0, where L is a sec-
ond order linear differential operator. A Green’s function g(x, y) for L must satisfy
λ1(g(x, y)) = 0, λ2(g(x, y)) = 0, where y is fixed, λ1 and λ2 are liner functionals, and
g is considered as a function of x.

(a) List the other properties g(x, y) must satisfy.

(b) Consider the equation u′′(x) = f(x), u(0) = 0,
∫ 1

0
u(t)dt = 0. Find the Green’s

function for this equation. (Hint: the Green’s function has the form u1(·)u2(·) where u1 is
a solution to u′′(x) = 0, u(0) = 0 while u2 is a solution to u′′(x) = 0.

(c) Write down a solution to u′′(x) = f(x), u(0) = 0,
∫ 1

0
u(t)dt = 0.

Problem 2. (a) State the Courant Minimax Principle.

(b) Prove an inequality relating the eigenvalues of a symmetric matrix before and after
one of its diagonal elements is increased.

(c) Use this inequality and the minimax principle to show that the smallest eigenvalue of
the following matrix is negative:  8 4 4

4 8 −4
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Problem 3. Let K be a compact, self-adjoint operator on a Hilbert space H and suppose
(I − λK) is bounded below, i.e., inf ||u||=1 ||(I − λK)u|| > 0.

(a) Explain why (I − λK)u = f can always be solved whenever f ∈ H.

(b) Explain how to solve (I − λK)u = f explicitly in terms of the eigenfunctions of K.

Problem 4. (a) Prove the following theorem: If {Pn} is a sequence of projections with the
property that ||Pnu− u|| → 0 as n→∞ for every u ∈ H, and if (I − λK)−1 exists, then
un, the solution of (I−λK)un = Pnf , converges to the solution of (I−λK)u = f as n→∞.

(b) Apply this theorem to sketch a way to find an approximate solution of the integral
equation

u(x) +

∫ 1

0

k(x, y)u(y)dy = f(x)

using piecewise linear finite elements. For simplicity assume k(x, y) and f(x) are contin-
uous functions of their arguments and define φk(x) to be the piecewise linear continuous
functions with φk(xj) = δk,j and linear on all the intervals [xj, xj+1] where xj = j/n. Also
assume that {Pn} are interpolating projections.

2. Part II: Numerical Analysis

Work 2 out of 3 problems of this part.

Problem 1. Let Ω = (0, 1) and u be the solution of the boundary value problem

u(4) − (k(x)u′)′ + q(x)u = f(x), for x ∈ Ω,

u(0) = u′′(0) = 0,

u(1) = 0, u′′(1) + βu′(1) = γ,

where k(x) ≥ 0, q(x) ≥ 0, f(x), γ, and β > 0 are given data.

(a) Derived the weak formulation of this problem. Specify the appropriate Sobolev spaces
and show that the corresponding bilinear form is coercive.

(b) Suggest a finite element approximation to this problem using piece-wise polynomial
functions over a uniform partition of Ω into subintervals with length h.

(c) Derive an error estimate for the FE solution.

Problem 2. Let Ω = (0, 1)2 and u be the solution of the second order elliptic problem:

−∆u := −ux1x1 − ux2x2 = f(x), for x ∈ Ω,

∂u

∂n
+ u = g(x), for x ∈ ∂Ω,
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where n is the outer unit normal vector to the boundary ∂Ω and f(x) and g(x) are given
functions.

(a) Derived the weak formulation of this problem in the form a(u, v) = F (v), where a(u, v)
and F (v) are appropriate linear and bilinear form defined on the Sobolev space H1(Ω).

(b) Let Sh be a finite element space of continuous piece-wise polynomial functions defined
over a regular partitioning of Ω into triangles ane let ah(u, v) and Fh(v) be the bilinear
forms where all integrals are comptuited approximately. Derive Strang’s lemma for
the error of the FEM: find uh ∈ Sh such that ah(uh, v) = Fh(v), ∀ v ∈ Sh.

(c) Let Sh be the finite element space of piece-wise linear functions. Let all integrals in
a(u, v) and F (v) be comptuited using quadratures. Namely, for τ and e being triangle
and edge defined by the vertexes P1, P2, P3 and P1, P2, respectively,∫

τ

w(x)dx ≈ |τ |
3

(w(P1) + w(P2) + w(P3)),

∫
e

w(x)ds ≈ |e|
2

(w(α) + w(β)),

where |τ | is the area of τ and |e| is the length of e, and α and β are the Gaussian
quadrature nodes. Explain why a(w, v) = ah(w, v) for all w, v ∈ Sh.

(d) Using the estimate of Part (b) estimate the error ‖u− uh‖H1 .

Problem 3. Let Ω = (0, 1)2 and u be the solution of the elliptic problem:

−∆u+ u = f(x), for x ∈ Ω, u = g(x), for x ∈ ∂Ω.

(a) Let ωh = {x = (x1,i, x2,j) : x1,i = ih, x2,j = jh, i, j = 0, 1, . . . , N, h = 1/N} be
a square mesh in Ω. Write down the 5-point stencil finite difference scheme for the
approximate solution Uij = U(x1,i, x2,j) of the above problem. Estimate the local trun-
cation error.

(b) Show that: max
x∈ωh

|U(x)| ≤ max
x∈ωh∩∂Ω

|g(x)|+ max
x∈ωh

|f(x)|.

(c) Using this a priori estimate and the estimation of the local truncation error in (a)
conclude that for sufficiently smooth solution u(x) the following error estimate (with
a constant independent of h):

max
x∈ωh

|U(x)− u(x)| ≤ Ch2.


