Complex analysis qualifying exam, August 2010.

1. Give the statements of the following:
(a) Montel's theorem;
(b) Schwarz's lemma.
2. Let f be a meromorphic function in a neighborhood of the closed unit disk $\overline{\mathbb{D}}=\{|z| \leq 1\}$. Suppose that $\Im f$ does not have zeros on the unit circle $\mathbb{T}=\{|z|=1\}$. Prove that then the number of zeros of f inside \mathbb{T} is equal to the number of poles of f inside \mathbb{T}.
3. Calculate "the Fresnel integrals,"

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x \text { and } \int_{0}^{\infty} \cos \left(x^{2}\right) d x
$$

that play an important role in diffraction theory. (You can use the value for the Gaussian integral: $\int_{\mathbb{R}} e^{-\frac{1}{2} x^{2}} d x=\sqrt{2 \pi}$.)
4. Let f be a bounded holomorphic function in the unit disk $\mathbb{D}=\{|z|<1\}$. Suppose that the radial limits of f are zero on a nontrivial arc of the unit circle, i.e. that for some $0 \leq \alpha<\beta \leq 2 \pi$,

$$
\lim _{r \rightarrow 1-} f\left(r e^{i \gamma}\right)=0
$$

for all $\alpha<\gamma<\beta$. Prove that then f is identically zero. (This is a simple version of a theorem proved by F. and M. Riesz in 1916.)
5. Suppose that the point w in the complex plane \mathbb{C} is moving according to the law $w=r e^{i t}$, where r is a constant and t is the time variable. Let f be a function, holomorphic in a neighborhood of the circle $\{|z|=r\}$. Find the instantaneous velocity of the point $f(w)$ at the moment t. (The answer should be presented in a form of a two-dimensional vector, depending on t and f.)
6. For an entire function f denote

$$
M_{f}(r)=\max _{|z|=r}|f(z)| .
$$

Prove that for any $0<\alpha<1$, the limit

$$
\lim _{r \rightarrow \infty} \frac{M_{f}(\alpha r)}{M_{f}(r)}
$$

is equal to α^{n} if f is a polynomial of degree n and to 0 if f is transcendental (not a polynomial).
7. Let f be a meromorphic function in a neighborhood of the closed unit disk $\overline{\mathbb{D}}$. Suppose that f is holomorphic in \mathbb{D} and

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \tag{*}
\end{equation*}
$$

for $z \in \mathbb{D}$. Prove that if f has a pole on the unit circle \mathbb{T} then the series in $(*)$ diverges at any $z \in \mathbb{T}$.
8. Find a general formula for all functions $w(z)$ that map the domain $\{|\Im z|<1, \Re z>0\}$ conformally onto the domain $\mathbb{D} \backslash[0,1]$.
9. Let $u_{n}, n=1,2, \ldots$ be a sequence of harmonic functions in a complex domain Ω such that $\left|u_{n}(z)\right|<C$ in Ω for some $C>0$ and all n. Suppose that there exists a subdomain $\Gamma \subset \Omega$ such that the sequence $u_{n}(z)$ converges for any $z \in \Gamma$. Prove that then $u_{n}(z)$ converges for any $z \in \Omega$ and the limit function is harmonic in Ω.
10. Let f be meromorphic in a complex domain Ω. Prove that then f^{\prime} is also meromorphic in Ω.

