Complex analysis qualifying exam, August 2012.

1. Give the statements of the following:
(a) Runge's theorem;
(b) the Schwarz lemma.
2. Find the Laurent expansion for the function $z^{-1}(z+1)^{-1}$ centered at $a=1$ in $\{1<|z-1|<2\}$.
3. Let f be a meromorphic function in \mathbb{C}. Suppose that f is doubly periodic, i.e. that for some non-zero numbers $a, b \in \mathbb{C}$,

$$
f(z)=f(z+a) \text { and } f(z)=f(z+b)
$$

for any $z \in \mathbb{C}$. Consider the parallelogram P with sides $(0, a)$ and $(0, b)$. Assuming that f does not have any zeros or poles on the sides of P, prove that the number of zeros of f in P is equal to the number of poles of f in P.
4. Apply the Residue Theorem to evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\cos x d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

5. Let $u(z)$ be a real continuous function on the unit circle. Write an integral formula for the analytic function $f(z)$ in the unit disk such that

$$
\lim _{z \rightarrow \xi} \Re f(z)=u(\xi)
$$

for every ξ on the unit circle.
6. Let f be an analytic function in the unit disk \mathbb{D}. Suppose that $|f(z)| \leq 1$ in \mathbb{D}. Prove that then

$$
\frac{|f(0)|-|z|}{1-|f(0)||z|} \leq|f(z)| \leq \frac{|f(0)|+|z|}{1+|f(0)||z|}
$$

7. Show that the equation

$$
e^{z}-z=\lambda,
$$

where $\lambda>1$, has exactly one root in the left half-plane $\{\Re z<0\}$.
8. Let f be a function, analytic and bounded in the strip $\{|\Im z|<\pi / 2\}$. Suppose that $f(\ln n)=0$ for all $n \in \mathbb{N}$. Prove that f is identically zero.
9. Let $f(z)$ be a meromorphic function in \mathbb{C}. Show that f can be expressed as $f(z)=g(z) / h(z)$ where g and h are entire.
10. Describe the set of all harmonic functions $u(x, y)$ in \mathbb{C} such that the product $\left(x^{2}-y^{2}\right) u(x, y)$ is harmonic in \mathbb{C}.

