Complex analysis qualifying exam, August 2012.

- 1. Give the statements of the following:
 - (a) Runge's theorem;
 - (b) the Schwarz lemma.
- 2. Find the Laurent expansion for the function $z^{-1}(z+1)^{-1}$ centered at a = 1 in $\{1 < |z-1| < 2\}$.

3. Let f be a meromorphic function in \mathbb{C} . Suppose that f is doubly periodic, i.e. that for some non-zero numbers $a, b \in \mathbb{C}$,

$$f(z) = f(z+a)$$
 and $f(z) = f(z+b)$

for any $z \in \mathbb{C}$. Consider the parallelogram P with sides (0, a) and (0, b). Assuming that f does not have any zeros or poles on the sides of P, prove that the number of zeros of f in P is equal to the number of poles of f in P.

4. Apply the Residue Theorem to evaluate the integral

$$\int_{-\infty}^{\infty} \frac{\cos x dx}{(x^2+1)(x^2+4)}.$$

5. Let u(z) be a real continuous function on the unit circle. Write an integral formula for the analytic function f(z) in the unit disk such that

$$\lim_{z\to\xi} \Re f(z) = u(\xi)$$

for every ξ on the unit circle.

6. Let f be an analytic function in the unit disk \mathbb{D} . Suppose that $|f(z)| \leq 1$ in \mathbb{D} . Prove that then

$$\frac{|f(0)| - |z|}{1 - |f(0)||z|} \le |f(z)| \le \frac{|f(0)| + |z|}{1 + |f(0)||z|}.$$

7. Show that the equation

$$e^z - z = \lambda,$$

where $\lambda > 1$, has exactly one root in the left half-plane { $\Re z < 0$ }.

8. Let f be a function, analytic and bounded in the strip $\{|\Im z| < \pi/2\}$. Suppose that $f(\ln n) = 0$ for all $n \in \mathbb{N}$. Prove that f is identically zero.

9. Let f(z) be a meromorphic function in \mathbb{C} . Show that f can be expressed as f(z) = g(z)/h(z) where g and h are entire.

10. Describe the set of all harmonic functions u(x, y) in \mathbb{C} such that the product $(x^2 - y^2)u(x, y)$ is harmonic in \mathbb{C} .