Complex analysis qualifying exam, August 2014.

1. Give the statements of
(a) Runge's Theorem;
(b) Schwarz' Lemma.
2. a) Find and classify all isolated singularities of

$$
f(z)=\frac{z^{2}(z-\pi)}{\sin ^{2} z} \quad \text { and } \quad g(z)=\left(z^{2}-1\right) \cos \frac{1}{z-1} .
$$

b) Find the residue of f at $z=2 \pi$ and the residue of g at $z=1$.
3. Let u be a bounded harmonic function in the first quadrant $\Omega=\{\Re z>0, \Im z>0\}$. Suppose that the limit

$$
\lim _{z \rightarrow \xi, z \in \Omega} u(z)
$$

is equal to 1 for all $\xi \in(0,1)$ and is equal to 0 for all $\xi \in \partial \Omega \backslash[0,1]$. Find $u\left(\frac{1+i}{\sqrt{2}}\right)$.
4. Let f be an entire function. Suppose that f satisfies

$$
|f(x+i y)| \leq \frac{1}{|y|}
$$

for all $x, y \in \mathbb{R}$. Prove that f is identically zero.
5. Find a formula for a conformal map from D_{1} to D_{2}, where D_{1} is the unit disk with a slit, $D_{1}=\{|z|<1, z \notin[1 / 2,1]\}$, and D_{2} is the strip $D_{2}=\{|\Re z|<1\}$.
6. Prove that if $0<|z|<1$, then $\frac{1}{4}|z|<\left|1-e^{z}\right|<\frac{7}{4}|z|$.
7. Prove that the equation

$$
a z^{3}-z+b=e^{-z}(z+2)
$$

has two solutions in the right half-plane $\{\Re z>0\}$ when $a>0$ and $b>2$.
8. Let f be a bounded analytic function in the upper half-plane \mathbb{C}_{+}. Suppose that

$$
f(i n)=e^{-n}
$$

for all $n \in \mathbb{N}$. Find $f(1+i)$. (You need to explain why the value that you found is the only possible.)
9. Let $f_{n}: \mathbb{D} \rightarrow \mathbb{D}$ be a sequence of holomorphic functions in the unit disk \mathbb{D}. Suppose that $f_{n}(z) \rightarrow 1$ for some $z \in \mathbb{D}$. Prove that then f_{n} converges to 1 normally in \mathbb{D}.
10. Suppose that f is an entire function, and g is a holomorphic function in the punctured disk $\{z \in \mathbb{C}: 0<|z|<1\}$. If the composite function $f \circ g$ has a simple pole at the origin, then what can you deduce about the functions f and g ?

