Complex analysis qualifying exam, August 2014.

- **1.** Give the statements of
 - (a) Runge's Theorem;
 - (b) Schwarz' Lemma.
- **2.** a) Find and classify all isolated singularities of

$$f(z) = \frac{z^2(z-\pi)}{\sin^2 z}$$
 and $g(z) = (z^2 - 1)\cos\frac{1}{z-1}$.

b) Find the residue of f at $z = 2\pi$ and the residue of g at z = 1.

3. Let u be a bounded harmonic function in the first quadrant $\Omega = \{\Re z > 0, \Im z > 0\}$. Suppose that the limit

$$\lim_{z \to \xi, \ z \in \Omega} u(z)$$

is equal to 1 for all $\xi \in (0,1)$ and is equal to 0 for all $\xi \in \partial \Omega \setminus [0,1]$. Find $u\left(\frac{1+i}{\sqrt{2}}\right)$.

4. Let f be an entire function. Suppose that f satisfies

$$|f(x+iy)| \le \frac{1}{|y|}$$

for all $x, y \in \mathbb{R}$. Prove that f is identically zero.

5. Find a formula for a conformal map from D_1 to D_2 , where D_1 is the unit disk with a slit, $D_1 = \{|z| < 1, z \notin [1/2, 1]\}$, and D_2 is the strip $D_2 = \{|\Re z| < 1\}$.

6. Prove that if 0 < |z| < 1, then $\frac{1}{4}|z| < |1 - e^z| < \frac{7}{4}|z|$.

7. Prove that the equation

$$az^3 - z + b = e^{-z}(z+2)$$

has two solutions in the right half-plane $\{\Re z > 0\}$ when a > 0 and b > 2.

8. Let f be a bounded analytic function in the upper half-plane \mathbb{C}_+ . Suppose that

$$f(in) = e^{-r}$$

for all $n \in \mathbb{N}$. Find f(1+i). (You need to explain why the value that you found is the only possible.)

9. Let $f_n : \mathbb{D} \to \mathbb{D}$ be a sequence of holomorphic functions in the unit disk \mathbb{D} . Suppose that $f_n(z) \to 1$ for some $z \in \mathbb{D}$. Prove that then f_n converges to 1 normally in \mathbb{D} .

10. Suppose that f is an entire function, and g is a holomorphic function in the punctured disk $\{z \in \mathbb{C} : 0 < |z| < 1\}$. If the composite function $f \circ g$ has a simple pole at the origin, then what can you deduce about the functions f and g?