Complex Analysis Qualifying Examination

August 2015

1. Find every complex number z for which the infinite series $\sum_{n=1}^{\infty}\left(\frac{2015+i}{2015-i}\right)^{n^{2}}\left(\frac{z-2015}{z+2015}\right)^{n}$ converges.
2. Determine every complex number w that can be written in the form $\sin (z)$ for some complex number z having positive imaginary part. In other words, what is the image of the open upper half-plane under the sine function?
3. Prove that $\int_{0}^{\infty} \frac{(\log x)^{2}}{1+x^{2}} d x=\frac{\pi^{3}}{8}$.
4. When n is an integer, the Bessel function $J_{n}(z)$ can be defined to be the coefficient of t^{n} in the Laurent series about the origin of

$$
\exp \left(\frac{1}{2} z\left(t-\frac{1}{t}\right)\right)
$$

(series with respect to the variable t). Use this definition to show that $J_{-n}(z)=(-1)^{n} J_{n}(z)$.
5. When the variable z is restricted to the first quadrant (where $\operatorname{Re} z>0$ and $\operatorname{Im} z>0$), how many zeroes does the polynomial $z^{2015}+8 z^{12}+1$ have?
6. Suppose f is an entire function such that $f(x+0 i)$ is real for every real number x, and $f(0+y i)$ is real for every real number y. Prove the existence of an entire function g such that $f(z)=g\left(z^{2}\right)$ for every complex number z.
7. Does there exist a holomorphic function that maps the open unit disk surjectively (but not injectively) onto the whole complex plane?
8. Determine the group of holomorphic bijections (automorphisms) of $\{z \in \mathbb{C}:|z|>1\}$, the complement of the closed unit disk.
9. On the punctured plane $\mathbb{C} \backslash\{0\}$, can the function $e^{1 / z}$ be obtained as the pointwise limit of a sequence of polynomials in z ?
10. Prove that if f_{1} and f_{2} are holomorphic functions with no common zero in a region of the complex plane, then there exist holomorphic functions g_{1} and g_{2} such that $f_{1} g_{1}+f_{2} g_{2}$ is identically equal to 1 in the region.
[Exactly 100 years ago, the algebraist J. H. M. Wedderburn proved this proposition by applying Mittag-Leffler's theorem.]

