Complex Analysis Qualifying Examination

August 2016

1. State the following three theorems, with precise hypotheses and conclusions: Morera's theorem, the Weierstrass factorization theorem for entire functions, and Hurwitz's theorem about limits of sequences of holomorphic functions.
2. Suppose that g is a nonconstant entire function, and $u: \mathbb{C} \rightarrow \mathbb{R}$ is a twice continuously differentiable function. Prove that if the composite function $u \circ g$ is harmonic, then u is harmonic.
3. Give an example of a holomorphic function f on $\mathbb{C} \backslash\{x+i y: x \leq 0$ and $y=0\}$, the plane with a slit along the negative part of the real axis, such that the limit from above $\lim _{y \rightarrow 0^{+}} f(-1+i y)$ exists but the limit from below $\lim _{y \rightarrow 0^{-}} f(-1+i y)$ does not exist.
4. Prove that if $\operatorname{Re}(z) \leq 0$ and $\operatorname{Re}(w) \leq 0$, then $\left|e^{z}-e^{w}\right| \leq|z-w|$.
5. Prove normality of the family of holomorphic functions f in the unit disk such that

$$
\sup _{0<r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta<2016
$$

6. Apply the residue theorem to show that $\int_{0}^{\infty} \frac{(\log x)^{2}}{1+x^{2}} d x=\frac{\pi^{3}}{8}$.
7. Prove that if $f: \mathbb{C} \backslash\{0\} \rightarrow G$ is a biholomorphic mapping from the punctured plane onto an open subset G of \mathbb{C}, then G must be $\mathbb{C} \backslash\{b\}$ for some complex number b.
8. Suppose f is a holomorphic function on the upper half-plane such that $f(z)$ is never equal to $\pm i$. Prove the existence of a holomorphic function g on the upper half-plane such that $f(z)=\tan (g(z))$ for every z.
9. How many zeroes does the function $z^{8}+\exp (2016 \pi z)$ have in the region where $\operatorname{Re}(z)<0$ (the left-hand half-plane)? Explain.
10. State and prove one of the following inequalities concerning functions on disks: the Schwarz lemma for holomorphic functions, Harnack's inequality about positive harmonic functions, Cauchy's estimate for derivatives of holomorphic functions.
